一次 MySql 分页查询优化原理分析

Edward ChuEdward Chu
4 min read

Table of contents

场景: 有一张财务流水表,未分库分表,目前的数据量为955万+,分页查询使用到了limit,优化之前的查询耗时 16 s 912 ms (execution: 16 s 805 ms, fetching: 107 ms),按照下文的方式调整SQL后,耗时 332 ms (execution: 158 ms, fetching: 174 ms);

操作: 查询条件放到子查询中,子查询只查主键ID,然后使用子查询中确定的主键关联查询其他的属性字段;

原理: 减少回表操作,利用延迟关联或者子查询优化超多分页场景。

-- 优化前 SQL
SELECT  各种字段
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
-- 优化后SQL
SELECT  各种字段
FROM `table_name` main_tale
RIGHT JOIN
(
SELECT  子查询只查主键
FROM `table_name`
WHERE 各种条件
LIMIT 0,10;
) temp_table ON temp_table.主键 = main_table.主键

MySQL 用 limit 为什么会影响性能?

前言

说明一下MySQL的版本:

mysql> select version();
+-----------+
| version() |
+-----------+
| 5.7.17    |
+-----------+
1 row in set (0.00 sec)

表结构:

mysql> desc test;
+--------+---------------------+------+-----+---------+----------------+
| Field  | Type                | Null | Key | Default | Extra          |
+--------+---------------------+------+-----+---------+----------------+
| id     | bigint(20) unsigned | NO   | PRI | NULL    | auto_increment |
| val    | int(10) unsigned    | NO   | MUL | 0       |                |
| source | int(10) unsigned    | NO   |     | 0       |                |
+--------+---------------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

id为自增主键,val为非唯一索引。 向表中添加 500 万条数据:

mysql> select count(*) from test;
+----------+
| count(*) |
+----------+
|  5242882 |
+----------+
1 row in set (4.25 sec)

我们知道,当limit offset rows中的offset很大时,会出现效率问题:

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+
| 3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (15.98 sec)

为了达到相同的目的,我们一般会改写成如下语句:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.38 sec)

时间相差很明显。

为什么会出现上面的结果?我们看一下 select * from test where val=4 limit 300000,5; 的查询过程:

查询到索引叶子节点数据。根据叶子节点上的主键值去聚簇索引上查询需要的全部字段值。

类似于下面这张图:

image.png 像上面这样,需要查询 300005 次索引节点,查询 300005 次聚簇索引的数据,最后再将结果过滤掉前 300000 条,取出最后 5 条。MySQL 耗费了大量随机 I/O 在查询聚簇索引的数据上,而有 300000 次随机 I/O 查询到的数据是不会出现在结果集当中的。

肯定会有人问:既然一开始是利用索引的,为什么不先沿着索引叶子节点查询到最后需要的5个节点,然后再去聚簇索引中查询实际数据。这样只需要 5 次随机 I/O,类似于下面图片的过程:

image.png

证实

下面我们实际操作一下来证实上述的推论:

为了证实 select * from test where val=4 limit 300000,5 是扫描 300005 个索引节点和 300005 个聚簇索引上的数据节点,我们需要知道 MySQL 有没有办法统计在一个 sql 中通过索引节点查询数据节点的次数。

我只能通过间接的方式来证实:

InnoDB 中有 buffer pool。里面存有最近访问过的数据页,包括数据页和索引页。所以我们需要运行两个 sql,来比较 buffer pool 中的数据页的数量。

预测结果是运行 select * from test a inner join (select id from test where val=4 limit 300000,5); 之后,buffer pool 中的数据页的数量远远少于 select * from test where val=4 limit 300000,5; 对应的数量,因为前一个 sql 只访问 5 次数据页,而后一个 sql 访问 300005 次数据页。

select * from test where val=4 limit 300000,5
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
Empty set (0.04 sec)

可以看出,目前 buffer pool 中没有关于 test 表的数据页。

mysql> select * from test where val=4 limit 300000,5;
+---------+-----+--------+
| id      | val | source |
+---------+-----+--------+|
3327622 |   4 |      4 |
| 3327632 |   4 |      4 |
| 3327642 |   4 |      4 |
| 3327652 |   4 |      4 |
| 3327662 |   4 |      4 |
+---------+-----+--------+
5 rows in set (26.19 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |     4098 |
| val        |      208 |
+------------+----------+2 rows in set (0.04 sec)

可以看出,此时 buffer pool 中关于 test 表有 4098 个数据页,208 个索引页。 select * from test a inner join (select id from test where val=4 limit 300000,5) ; 为了防止上次试验的影响,我们需要清空 buffer pool,重启 mysql。

mysqladmin shutdown
/usr/local/bin/mysqld_safe &
mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;

Empty set (0.03 sec)

运行sql:

mysql> select * from test a inner join (select id from test where val=4 limit 300000,5) b on a.id=b.id;
+---------+-----+--------+---------+
| id      | val | source | id      |
+---------+-----+--------+---------+
| 3327622 |   4 |      4 | 3327622 |
| 3327632 |   4 |      4 | 3327632 |
| 3327642 |   4 |      4 | 3327642 |
| 3327652 |   4 |      4 | 3327652 |
| 3327662 |   4 |      4 | 3327662 |
+---------+-----+--------+---------+
5 rows in set (0.09 sec)

mysql> select index_name,count(*) from information_schema.INNODB_BUFFER_PAGE where INDEX_NAME in('val','primary') and TABLE_NAME like '%test%' group by index_name;
+------------+----------+
| index_name | count(*) |
+------------+----------+
| PRIMARY    |        5 |
| val        |      390 |
+------------+----------+
2 rows in set (0.03 sec)

可以看明显的看出两者的差别:第一个 sql 加载了 4098 个数据页到 buffer pool,而第二个 sql 只加载了 5 个数据页到 buffer pool。符合我们的预测。 也证实了为什么第一个 sql 会慢:读取大量的无用数据行(300000),最后却抛弃掉。而且这会造成一个问题:加载了很多热点不是很高的数据页到 buffer pool,会造成 buffer pool 的污染,占用 buffer pool 的空间。

为了在每次重启时确保清空 buffer pool,我们需要关闭innodb_buffer_pool_dump_at_shutdowninnodb_buffer_pool_load_at_startup,这两个选项能够控制数据库关闭时 dump 出 buffer pool 中的数据和在数据库开启时载入在磁盘上备份 buffer pool 的数据。

0
Subscribe to my newsletter

Read articles from Edward Chu directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Edward Chu
Edward Chu

Science is gold.