LRU Cache (LeetCode)
Problem Description
https://leetcode.com/problems/lru-cache/
Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
int get(int key) Return the value of the key if the key exists, otherwise return -1.
void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key. The functions get and put must each run in O(1) average time complexity.
Intuition
If we maintain a list ordered by recency, then whenever a new element is accessed, we can add it to the front of the list and remove the last element from the list. If an element is updated, we also need to move the element to the front of the list.
The operations needed:
Adding an element to the front of the list
Removing an element from the end of the list
Moving an element
- from the middle to the front of the list.
If we use a doubly linked list, all of these operations can be done in constant time.
Time Complexity
Hashmap Lookup: O(1) time <- - -> Array Search: O(n) time
Doubly Linked List Ordering: O(1) time <- - -> Array Sort: O(n) time
Space Complexity
Hashmap: O(n) <- - -> Array: O(n)
Doubly Linked List: O(n) <- - -> Array: O(n)
For efficiency, we can use a hashmap + doubly linked list, since it provides much better time complexity with similar space complexity.
Test Cases
Some cases that need to be tested are:
Evicting the least recently used key
Cache with size 1
Updating the value of an existing key
Calling
get()
on a non-existent key
Python Implementation
Things to Note
Node
- The Node class should have a
key
variable to help delete entries from thehash_map
.
How Sentinel Works
A sentinel node is a dummy node that points to the first and last elements of the list.
sentinel.next
ishead
of the doubly linked listsentinel.prev
istail
of the doubly linked list
Hash Map
- When a
node
is added/removed from the linked list, the correspondingnode
has to be added/removed from thehash_map
.
Updating Key
- When a
key
is updated, thenode
should move to the front of the list
Code
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity):
self.capacity = capacity
# HashMap: key -> key, value -> Node
self.hash_map = {}
# use sentinel node to simplify operations
# sentinel.next -> head
# sentinel.prev -> tail
self.sentinel = Node(None, None)
self.sentinel.next = self.sentinel
self.sentinel.prev = self.sentinel
def put(self, key, val):
# if key exists, update value and move it to the front
if key in self.hash_map:
node = self.hash_map[key]
self.remove_node(node)
self.insert_into_head(node)
node.val = val
else:
node = Node(key, val)
# if cache is not full
if len(self.hash_map) < self.capacity:
self.hash_map[key] = node
self.insert_into_head(node)
# if cache is full, update linked list
else:
self.hash_map[key] = node
self.insert_into_head(node)
self.remove_from_tail()
def get(self, key):
# if element is in cache, move it to the front
if key in self.hash_map:
node = self.hash_map[key]
self.remove_node(node)
self.insert_into_head(node)
return node.val
else:
return -1
def insert_into_head(self, node):
# currently, sentinel <-> prev_head
# we want it to be updated to sentinel <-> node <-> prev_head
# sentinel <- node - prev_head
node.prev = self.sentinel
# sentinel - node -> prev_head
node.next = self.sentinel.next
# sentinel - node <- prev_head
self.sentinel.next.prev = node
# sentinel -> node - prev_head
self.sentinel.next = node
def remove_from_tail(self):
# remove from hash map since it shouldn't be in the cache
del self.hash_map[self.sentinel.prev.key]
node = self.sentinel.prev
self.remove_node(node)
def remove_node(self, node):
# currently, prev <-> node <-> next
# we want it to be updated to prev <-> next
# prev <- next
node.next.prev = node.prev
# prev -> next
node.prev.next = node.next
# function for debugging
def print_hash(self):
print('---- Hash Map ----')
for key, node in self.hash_map.items():
print("key: ", key, "val: ", node.val)
# function for debugging
def print_linked_list(self):
print('---- Linked List----')
head = self.sentinel.next
lst = []
while head != self.sentinel:
lst.append((head.key, head.val))
head = head.next
print(lst)
Testing
The two functions print_hash
and print_linked_list
can be used to print the current hash and the linked list.
As mentioned above, the cases that need to be tested are:
Evicting the least recently used key
Cache with size 1
Updating the value of an existing key
Calling
get()
on a non-existent key
Test Case 1 (Evicting the least recently used key)
Input:
res = []
lru = LRUCache(2)
res.append(lru.put(1, 1))
res.append(lru.put(2, 2))
res.append(lru.get(1))
res.append(lru.put(3, 3))
res.append(lru.get(2))
res.append(lru.put(4, 4))
res.append(lru.get(1))
res.append(lru.get(3))
res.append(lru.get(4))
Output:
- [None, None, 1, None, -1, None, -1, 3, 4]
States for put()
1.
---- Hash Map ----
key: 1 val: 1
---- Linked List----
[(1, 1)]
2.
---- Hash Map ----
key: 1 val: 1
key: 2 val: 2
---- Linked List----
[(2, 2), (1, 1)]
3.
---- Hash Map ----
key: 1 val: 1
key: 3 val: 3
---- Linked List----
[(3, 3), (1, 1)]
4.
---- Hash Map ----
key: 3 val: 3
key: 4 val: 4
---- Linked List----
[(4, 4), (3, 3)]
As shown, the evicting the least recently used element is properly implemented.
Subscribe to my newsletter
Read articles from Alex Kang directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by