LRU Cache (LeetCode)

Alex KangAlex Kang
5 min read

Problem Description

https://leetcode.com/problems/lru-cache/

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.

  • int get(int key) Return the value of the key if the key exists, otherwise return -1.

  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key. The functions get and put must each run in O(1) average time complexity.

Intuition

If we maintain a list ordered by recency, then whenever a new element is accessed, we can add it to the front of the list and remove the last element from the list. If an element is updated, we also need to move the element to the front of the list.

The operations needed:

  1. Adding an element to the front of the list

  2. Removing an element from the end of the list

  3. Moving an element

  1. from the middle to the front of the list.

If we use a doubly linked list, all of these operations can be done in constant time.

Time Complexity

  • Hashmap Lookup: O(1) time <- - -> Array Search: O(n) time

  • Doubly Linked List Ordering: O(1) time <- - -> Array Sort: O(n) time

Space Complexity

  • Hashmap: O(n) <- - -> Array: O(n)

  • Doubly Linked List: O(n) <- - -> Array: O(n)

For efficiency, we can use a hashmap + doubly linked list, since it provides much better time complexity with similar space complexity.

Test Cases

Some cases that need to be tested are:

  1. Evicting the least recently used key

  2. Cache with size 1

  3. Updating the value of an existing key

  4. Calling get() on a non-existent key

Python Implementation

Things to Note

Node

  • The Node class should have a key variable to help delete entries from the hash_map.

How Sentinel Works

A sentinel node is a dummy node that points to the first and last elements of the list.

  • sentinel.next is head of the doubly linked list

  • sentinel.prev is tail of the doubly linked list

Hash Map

  • When a node is added/removed from the linked list, the corresponding node has to be added/removed from the hash_map.

Updating Key

  • When a key is updated, the node should move to the front of the list

Code

class Node:
    def __init__(self, key, val):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None


class LRUCache:
    def __init__(self, capacity):
        self.capacity = capacity

        # HashMap: key -> key, value -> Node
        self.hash_map = {}

        # use sentinel node to simplify operations
        # sentinel.next -> head
        # sentinel.prev -> tail
        self.sentinel = Node(None, None)
        self.sentinel.next = self.sentinel
        self.sentinel.prev = self.sentinel


    def put(self, key, val):
        # if key exists, update value and move it to the front
        if key in self.hash_map:
            node = self.hash_map[key]
            self.remove_node(node)
            self.insert_into_head(node)
            node.val = val
        else:
            node = Node(key, val)
            # if cache is not full
            if len(self.hash_map) < self.capacity:
                self.hash_map[key] = node
                self.insert_into_head(node)
            # if cache is full, update linked list
            else:
                self.hash_map[key] = node
                self.insert_into_head(node)
                self.remove_from_tail()


    def get(self, key):
        # if element is in cache, move it to the front
        if key in self.hash_map:
            node = self.hash_map[key]
            self.remove_node(node)
            self.insert_into_head(node)
            return node.val        
        else:
            return -1


    def insert_into_head(self, node):
        # currently, sentinel <-> prev_head
        # we want it to be updated to sentinel <-> node <-> prev_head

        # sentinel <- node - prev_head
        node.prev = self.sentinel

        # sentinel - node -> prev_head
        node.next = self.sentinel.next

        # sentinel - node <- prev_head
        self.sentinel.next.prev = node

        # sentinel -> node - prev_head
        self.sentinel.next = node


    def remove_from_tail(self):
        # remove from hash map since it shouldn't be in the cache
        del self.hash_map[self.sentinel.prev.key]
        node = self.sentinel.prev
        self.remove_node(node)


    def remove_node(self, node):
        # currently, prev <-> node <-> next
        # we want it to be updated to prev <-> next

        # prev <- next
        node.next.prev = node.prev

        # prev -> next
        node.prev.next = node.next


    # function for debugging
    def print_hash(self):
        print('---- Hash Map ----')
        for key, node in self.hash_map.items():
            print("key: ", key, "val: ", node.val)


    # function for debugging
    def print_linked_list(self):
        print('---- Linked List----')
        head = self.sentinel.next
        lst = []
        while head != self.sentinel:
            lst.append((head.key, head.val))
            head = head.next
        print(lst)

Testing

The two functions print_hash and print_linked_list can be used to print the current hash and the linked list.

As mentioned above, the cases that need to be tested are:

  1. Evicting the least recently used key

  2. Cache with size 1

  3. Updating the value of an existing key

  4. Calling get() on a non-existent key

Test Case 1 (Evicting the least recently used key)

Input:

res = []
lru = LRUCache(2)
res.append(lru.put(1, 1))
res.append(lru.put(2, 2))
res.append(lru.get(1))
res.append(lru.put(3, 3))
res.append(lru.get(2))
res.append(lru.put(4, 4))
res.append(lru.get(1))
res.append(lru.get(3))
res.append(lru.get(4))

Output:

  • [None, None, 1, None, -1, None, -1, 3, 4]

States for put()

1.
---- Hash Map ----
key:  1 val:  1
---- Linked List----
[(1, 1)]

2.
---- Hash Map ----
key:  1 val:  1
key:  2 val:  2
---- Linked List----
[(2, 2), (1, 1)]

3.
---- Hash Map ----
key:  1 val:  1
key:  3 val:  3
---- Linked List----
[(3, 3), (1, 1)]

4.
---- Hash Map ----
key:  3 val:  3
key:  4 val:  4
---- Linked List----
[(4, 4), (3, 3)]

As shown, the evicting the least recently used element is properly implemented.

0
Subscribe to my newsletter

Read articles from Alex Kang directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Alex Kang
Alex Kang