Convert BST to Max Heap
Table of contents
Given a Binary Search Tree which is also a Complete Binary Tree. The problem is to convert a given BST into a Special Max Heap with the condition that all the values in the left subtree of a node should be less than all the values in the right subtree of the node. This condition is applied to all the nodes in the so-converted Max Heap.
Examples:
Input: 4
/ \
2 6
/ \ / \
1 3 5 7
Output: 7
/ \
3 6
/ \ / \
1 2 4 5
The given BST has been transformed into a
Max Heap.
All the nodes in the Max Heap satisfy the given
condition, that is, values in the left subtree of
a node should be less than the values in the right
a subtree of the node.
Approach 1 :
Create an array arr[] of size n, where n is the number of nodes in the given BST.
Perform the inorder traversal of the BST and copy the node values in the arr[] in sorted
order.Now perform the postorder traversal of the tree.
While traversing the root during the postorder traversal, one by one copy the values from the array arr[] to the nodes.
Implementation:
python
# Python3 implementation to convert a given
# BST to Max Heap
i = 0
class Node:
def __init__(self):
self.data = 0
self.left = None
self.right = None
# Helper function that allocates a new node
# with the given data and None left and right
# pointers.
def getNode(data):
newNode = Node()
newNode.data = data
newNode.left = newNode.right = None
return newNode
arr = []
# Function for the inorder traversal of the tree
# so as to store the node values in 'arr' in
# sorted order
def inorderTraversal( root):
if (root == None):
return arr
# first recur on left subtree
inorderTraversal(root.left)
# then copy the data of the node
arr.append(root.data)
# now recur for right subtree
inorderTraversal(root.right)
def BSTToMaxHeap(root):
global i
if (root == None):
return None
# recur on left subtree
root.left = BSTToMaxHeap(root.left)
# recur on right subtree
root.right = BSTToMaxHeap(root.right)
# copy data at index 'i' of 'arr' to
# the node
root.data = arr[i]
i = i + 1
return root
# Utility function to convert the given BST to
# MAX HEAP
def convertToMaxHeapUtil( root):
global i
# vector to store the data of all the
# nodes of the BST
i = 0
# inorder traversal to populate 'arr'
inorderTraversal(root)
# BST to MAX HEAP conversion
root = BSTToMaxHeap(root)
return root
# Function to Print Postorder Traversal of the tree
def postorderTraversal(root):
if (root == None):
return
# recur on left subtree
postorderTraversal(root.left)
# then recur on right subtree
postorderTraversal(root.right)
# print the root's data
print(root.data ,end= " ")
# Driver Code
# BST formation
root = getNode(4)
root.left = getNode(2)
root.right = getNode(6)
root.left.left = getNode(1)
root.left.right = getNode(3)
root.right.left = getNode(5)
root.right.right = getNode(7)
root = convertToMaxHeapUtil(root)
print("Postorder Traversal of Tree:" )
postorderTraversal(root)
Output
Postorder Traversal of Tree:
1 2 3 4 5 6 7
Complexity Analysis:
Time Complexity: O(n)
Auxiliary Space: O(n)
Approach 2 : (Using Heapify Up/Max Heap)
Create an array q[] of size n, where n is the number of nodes in the given BST.
Traverse the BST and append each node into the array using level order traversal.
Call heapify_up to create max-heap for each element in array q[] from 1 to n so that the array q[] will be arranged in descending order using max-heap.
Update the root and child of each node of the tree using array q[] like creating a new tree from array q[].
Implementation:
python
# User function Template for python3
class Node:
def __init__(self):
self.data = 0
self.left = None
self.right = None
# Helper function that allocates a new node
# with the given data and None left and right
# pointers.
def getNode(data):
newNode = Node()
newNode.data = data
newNode.left = newNode.right = None
return newNode
# To find parent index
def parent(i):
return (i - 1) // 2
# heapify_up to arrange like max-heap
def heapify_up(q, i):
while i > 0 and q[parent(i)].data < q[i].data:
q[parent(i)], q[i] = q[i], q[parent(i)]
i = parent(i)
def convertToMaxHeapUtil(root):
if root is None:
return root
# creating list for BST nodes
q = []
q.append(root)
i = 0
while len(q) != i:
if q[i].left is not None:
q.append(q[i].left)
if q[i].right is not None:
q.append(q[i].right)
i += 1
# calling max-heap for each iteration
for i in range(1, len(q)):
heapify_up(q, i)
# updating root as max value in heap
root = q[0]
i = 0
# updating left and right nodes of BST using list
while i < len(q):
if 2 * i + 1 < len(q):
q[i].left = q[2 * i + 1]
else:
q[i].left = None
if 2 * i + 2 < len(q):
q[i].right = q[2 * i + 2]
else:
q[i].right = None
i += 1
return root
# Function to Print Postorder Traversal of the tree
def postorderTraversal(root):
if (root == None):
return
# recur on left subtree
postorderTraversal(root.left)
# then recur on right subtree
postorderTraversal(root.right)
# print the root's data
print(root.data, end=" ")
# Driver Code
# BST formation
root = getNode(4)
root.left = getNode(2)
root.right = getNode(6)
root.left.left = getNode(1)
root.left.right = getNode(3)
root.right.left = getNode(5)
root.right.right = getNode(7)
root = convertToMaxHeapUtil(root)
print("Postorder Traversal of Tree:")
postorderTraversal(root)
Output
Postorder Traversal of Tree:
1 2 3 4 5 6 7
Complexity Analysis:
Time Complexity: O(n)
Auxiliary Space: O(n)
Subscribe to my newsletter
Read articles from Jayanth H S directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by