Understanding the Model Context Protocol (MCP)

Philippe CharrièrePhilippe Charrière
Jan 12, 2025·
6 min read

Definition

Pre-requisite: read my blog post about "Tool Calling" and Ollama.

The MCP is an open protocol that standardizes how applications provide context to large language models (LLMs). It also provides a standardized way to connect AI models with various data sources and tools.

Anthropic defined this protocol, and one of its first implementations is Claude Desktop. This application enables Anthropic's Claude AI model to interact with your computer using the MCP protocol.

General Architecture

The Model Context Protocol uses a client-server architecture where a host application can connect to multiple servers:

  1. MCP Hosts: These are generative AI applications using LLMs that want to access external resources via MCP. Claude Desktop is an example of a host application.

  2. MCP Clients: Protocol clients that maintain 1:1 connections with servers (and the client is used by MCP host applications).

  3. MCP Servers: Programs that expose specific functionalities through the MCP protocol using local or remote data sources.

The MCP protocol offers two main transport models: STDIO (Standard Input/Output) and SSE (Server-Sent Events). Both use JSON-RPC 2.0 as the message format for data transmission.

The first model, STDIO, communicates through standard input/output streams. It's ideal for local integrations. The second model, SSE, uses HTTP requests for communication, with SSE for server-to-client communications and POST requests for client-to-server communication. It's better suited for remote integrations.

flowchart TD
  subgraph Host["MCP Host (AI Application)"]
      App["Application LLM\n(e.g., Claude Desktop)"]
  end

  subgraph Client["MCP Client"]
      Protocol["Protocol Client\n1:1 connections"]
  end

  subgraph Servers["MCP Servers"]
      Server1["Server 1\n(Local Data)"]
      Server2["Server 2\n(Remote Data)"]
  end

  App --> Protocol
  Protocol <--> |STDIO\nJSON-RPC 2.0| Server1
  Protocol <--> |SSE\nJSON-RPC 2.0| Server2

The protocol includes provisions for adding additional transport models in the future.

Operation

The MCP server exposes functionalities to the host application via the MCP protocol (this could be a list of available tools, such as addition and subtraction).

tools: [
    {
        name: "add_numbers",
        description: "Add two numbers together",
        inputSchema: {
            type: "object",
            properties: {
                a: { type: "number" },
                b: { type: "number" }
            },
            required: ["a", "b"]
        }
    },
    {
        name: "subtract_numbers",
        description: "Subtract two numbers together",
        inputSchema: {
            type: "object",
            properties: {
                a: { type: "number" },
                b: { type: "number" }
            },
            required: ["a", "b"]
        }
    }
]

The host application formats this list into a similar list that is comprehensible by the LLM:

"tools": [
    {
      "function": {
        "description": "Add two numbers",
        "name": "add_numbers",
        "parameters": {
          "properties": {
            "number1": {
              "description": "The first number",
              "type": "number"
            },
            "number2": {
              "description": "The second number",
              "type": "number"
            }
          },
          "required": [
            "number1",
            "number2"
          ],
          "type": "object"
        }
      },
      "type": "function"
    },
    {
      "function": {
        "description": "Subtract two numbers",
        "name": "subtract_numbers",
        "parameters": {
          "properties": {
            "number1": {
              "description": "The first number",
              "type": "number"
            },
            "number2": {
              "description": "The second number",
              "type": "number"
            }
          },
          "required": [
            "number1",
            "number2"
          ],
          "type": "object"
        }
      },
      "type": "function"
    },
  ]
}

Using the tools list, the host application can generate a prompt for the model. For example, the tools list + "add 12 and 28".

The LLM (if it supports tools) can understand the prompt and extract the numbers, recognizing that it's an addition operation, and respond with a JSON result of this type:

"tool_calls": [
    {
        "function": {
            "name": "add_numbers",
            "arguments": {
                "number1": 12,
                "number2": 28
            }
        }
    }
]

From this result, the host application constructs a new message for the MCP server that will execute the add_numbers tool:

{
  "name":"add_numbers",
  "arguments": {
    "number1":28,
    "number2":14
  }
}

Finally, the MCP server responds with the operation result, which can be used by the host application:

{
  "result": 42
}
sequenceDiagram
    participant MCP Server
    participant Host App
    participant LLM

    MCP Server->>Host App: Expose tools (add_numbers, subtract_numbers)
    Host App->>Host App: Format tools for LLM
    Host App->>LLM: Send prompt + formatted tools
    Note over LLM: Process request
    LLM->>Host App: Return tool_calls JSON
    Host App->>MCP Server: Convert and send tool request
    MCP Server->>Host App: Return operation result

Key Advantages of MCP:

  • Standardization: A uniform way to connect LLMs to different data sources

  • Flexibility / Extensibility:

    • Ability to change LLM providers

    • Ability to change, add, or modify MCP servers

  • Security: Data protection within your infrastructure

  • Reusability: MCP servers can be used across different projects

Using a Docker Hub MCP Server with Claude Desktop

Ready-to-use MCP servers are available on Docker Hub at https://hub.docker.com/u/mcp. The SQLite MCP server, for example, is available at https://hub.docker.com/r/mcp/sqlite.

To use this Docker Hub MCP server with Claude Desktop, you need to add a configuration in a claude_desktop_config.json file to tell Claude Desktop how to start the MCP server. Here's an example configuration for the SQLite MCP server:

{
  "mcpServers": {
    "sqlite": {
      "command": "docker",
      "args": [
          "run",
          "--rm",
          "-i",
          "-v",
          "mcp-test:/mcp",
          "mcp/sqlite",
          "--db-path",
          "/mcp/test.db"
      ]
    }
  }
}

You can add multiple MCP servers to this configuration. For more information about Claude Desktop configuration, consult the official documentation: https://modelcontextprotocol.io/quickstart/user

This will allow you to see the available tools in Claude Desktop:

And then interact with the available tools:

In this example, I asked Claude Desktop to create a buddies table in the SQLite database and add 3 records to it.

✋ Note that it's entirely possible to do the same thing with a local LLM served by Ollama.

Using the SQLite MCP Server with Ollama and a Local LLM

As I'm particularly fond of Go, I searched for an MCP CLI written in Go and found mcphost by Mark3Labs (https://github.com/mark3labs/mcphost). You can install it using the following command:

go install github.com/mark3labs/mcphost@latest

Next, create a configuration file mcp.json to tell mcphost how to start the SQLite MCP server:

{
  "mcpServers": {
    "sqlite": {
      "command": "docker",
      "args": [
          "run",
          "--rm",
          "-i",
          "-v",
          "mcp-test:/mcp",
          "mcp/sqlite",
          "--db-path",
          "/mcp/test.db"
      ]
    }
  }
}

Now, you can start mcphost with the following command:

mcphost --config ./mcp.json --model ollama:qwen2.5:3b

Of course, you'll need to have downloaded the qwen2.5:3b model using the command ollama pull qwen2.5:3b.

And now, you can interact with the SQLite MCP server.

The CLI will display the available MCP server(s), and you can enter your prompt:

You can request the list of available tools using the /tools command:

And then interact with the available tools. Here, I'm asking to create a users table in the SQLite database and add three records to it:

And there you have it, the users table has been created, and the three records have been added successfully. I can now ask to view the list of the users:

And here's the result:

There you have it! You now know how to use the Model Context Protocol with Claude Desktop and Ollama. As you've seen, implementing an MCP server with Docker is extremely simple and quick. You can now explore the various possibilities offered by the MCP servers available on https://hub.docker.com/u/mcp to connect your LLMs to external information sources.

You can find the source code of the official MCP servers here: https://github.com/modelcontextprotocol/servers

In upcoming blog posts, I'll explain how to create your own MCP server and how to develop a host application to interact with this MCP server.

34
Subscribe to my newsletter

Read articles from Philippe Charrière directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Philippe Charrière
Philippe Charrière