Terragrunt's Remote State Backend Management

Managing remote state in Terraform/OpenTofu can be complex, especially when working with multiple environments and teams. Terragrunt simplifies this process by automating backend configuration, enforcing best practices, and reducing code duplication. This article explores how Terragrunt handles remote state management efficiently.
Why Use Terragrunt for Remote State?
Terraform's remote state allows multiple team members to work on the same infrastructure safely. However, manually configuring and managing backend storage, locking mechanisms, and security settings can be error-prone. Terragrunt solves this by:
Providing a centralized and reusable backend configuration.
Automating the creation of remote state storage resources (e.g., S3 buckets, DynamoDB tables).
Ensuring secure and consistent state management across environments.
Simplifying Terraform module organization using hierarchical configurations.
Key Features of Terragrunt’s Remote State Management
1. DRY Configuration
Rather than defining the backend settings in each Terraform module, Terragrunt allows you to specify them centrally in a root.hcl
file. This reduces duplication and makes updates easier.
2. Automatic Backend Configuration
Terragrunt provides two methods to manage remote state backends:
The
generate
block: Dynamically creates backend configuration files.The
remote_state
block: Automatically provisions backend storage and locking mechanisms.
3. Supports Multiple Backends
Terragrunt works with various backends, including:
AWS S3 with DynamoDB for state locking.
Google Cloud Storage (GCS) with object versioning.
Other Terraform-supported backends.
4. State Locking & Security
AWS S3 backend: Uses DynamoDB to prevent concurrent state modifications.
Encryption & Versioning: Ensures state files are protected.
IAM Policies: Restricts unauthorized access to state files.
Configuring Remote State with Terragrunt
1. Using the generate
Block
The generate
block creates a backend.tf
file dynamically in each module with backend settings.
generate "backend" {
path = "backend.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
terraform {
backend "s3" {
bucket = "my-terraform-state"
key = "${path_relative_to_include()}/terraform.tfstate"
region = "us-east-1"
encrypt = true
dynamodb_table = "terraform-lock-table"
}
}
EOF
}
This approach ensures backend settings are consistently applied without manually defining them in each module.
2. Using the remote_state
Block
The remote_state
block not only configures the backend but also provisions the necessary storage resources automatically.
remote_state {
backend = "s3"
config = {
bucket = "my-terraform-state"
key = "${path_relative_to_include()}/terraform.tfstate"
region = "us-east-1"
encrypt = true
dynamodb_table = "terraform-lock-table"
}
}
If the S3 bucket or DynamoDB table doesn’t exist, Terragrunt will create them, making it ideal for bootstrapping new environments.
Comparison: generate
vs. remote_state
Feature | generate Block | remote_state Block |
Defines backend settings | ✅ | ✅ |
Automatically creates backend storage | ❌ | ✅ |
Requires existing remote state resources | ✅ | ❌ |
Best suited for | Pre-existing infrastructure | Bootstrapping new environments |
Conclusion
Terragrunt’s remote state backend management enhances Terraform workflows by automating backend configuration, reducing duplication, and enforcing best practices. The generate
block is useful for structured backend definitions, while the remote_state
block is ideal for automatically provisioning state storage. By leveraging Terragrunt, teams can ensure secure, scalable, and maintainable infrastructure management.
Subscribe to my newsletter
Read articles from Chinnayya Chintha directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by

Chinnayya Chintha
Chinnayya Chintha
I am 𝗖𝗵𝗶𝗻𝗻𝗮𝘆𝘆𝗮 𝗖𝗵𝗶𝗻𝘁𝗵𝗮, 𝗮 𝗿𝗲𝘀𝘂𝗹𝘁𝘀-𝗱𝗿𝗶𝘃𝗲𝗻 𝗦𝗶𝘁𝗲 𝗥𝗲𝗹𝗶𝗮𝗯𝗶𝗹𝗶𝘁𝘆 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿 (𝗦𝗥𝗘) with proven expertise in 𝗮𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗻𝗴, 𝗮𝗻𝗱 𝗺𝗮𝗻𝗮𝗴𝗶𝗻𝗴 𝘀𝗲𝗰𝘂𝗿𝗲, 𝘀𝗰𝗮𝗹𝗮𝗯𝗹𝗲, 𝗮𝗻𝗱 𝗿𝗲𝗹𝗶𝗮𝗯𝗹𝗲 𝗶𝗻𝗳𝗿𝗮𝘀𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲 𝘀𝗼𝗹𝘂𝘁𝗶𝗼𝗻𝘀. My experience spans 𝗰𝗹𝗼𝘂𝗱-𝗻𝗮𝘁𝗶𝘃𝗲 𝘁𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀, 𝗖𝗜/𝗖𝗗 𝗮𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻, 𝗮𝗻𝗱 𝗜𝗻𝗳𝗿𝗮𝘀𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲 𝗮𝘀 𝗖𝗼𝗱𝗲 (𝗜𝗮𝗖), enabling me to deliver 𝗵𝗶𝗴𝗵-𝗽𝗲𝗿𝗳𝗼𝗿𝗺𝗶𝗻𝗴 𝘀𝘆𝘀𝘁𝗲𝗺𝘀 that enhance operational efficiency and drive innovation. As a 𝗙𝗿𝗲𝗲𝗹𝗮𝗻𝗰𝗲 𝗦𝗶𝘁𝗲 𝗥𝗲𝗹𝗶𝗮𝗯𝗶𝗹𝗶𝘁𝘆 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿, I specialize in: ✅𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁𝗶𝗻𝗴 𝘀𝗲𝗰𝘂𝗿𝗲 𝗮𝗻𝗱 𝘀𝗰𝗮𝗹𝗮𝗯𝗹𝗲 𝗽𝗮𝘆𝗺𝗲𝗻𝘁 𝗴𝗮𝘁𝗲𝘄𝗮𝘆 𝘀𝗼𝗹𝘂𝘁𝗶𝗼𝗻𝘀 𝘂𝘀𝗶𝗻𝗴 𝗔𝗪𝗦 𝘀𝗲𝗿𝘃𝗶𝗰𝗲𝘀 𝗹𝗶𝗸𝗲 𝗔𝗣𝗜 𝗚𝗮𝘁𝗲𝘄𝗮𝘆, 𝗟𝗮𝗺𝗯𝗱𝗮, 𝗮𝗻𝗱 𝗗𝘆𝗻𝗮𝗺𝗼𝗗𝗕.. ✅𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗻𝗴 𝗶𝗻𝗳𝗿𝗮𝘀𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲 𝗽𝗿𝗼𝘃𝗶𝘀𝗶𝗼𝗻𝗶𝗻𝗴 with 𝗧𝗲𝗿𝗿𝗮𝗳𝗼𝗿𝗺. ✅𝗢𝗽𝘁𝗶𝗺𝗶𝘇𝗶𝗻𝗴 𝗺𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴 using 𝗖𝗹𝗼𝘂𝗱𝗪𝗮𝘁𝗰𝗵. ✅Ensuring compliance with 𝗣𝗖𝗜-𝗗𝗦𝗦 𝘀𝘁𝗮𝗻𝗱𝗮𝗿𝗱𝘀 through 𝗲𝗻𝗰𝗿𝘆𝗽𝘁𝗶𝗼𝗻 𝗺𝗲𝗰𝗵𝗮𝗻𝗶𝘀𝗺𝘀 ✅implemented with 𝗔𝗪𝗦 𝗞𝗠𝗦 and 𝗦𝗲𝗰𝗿𝗲𝘁𝘀 𝗠𝗮𝗻𝗮𝗴𝗲𝗿. These efforts have resulted in 𝗲𝗻𝗵𝗮𝗻𝗰𝗲𝗱 𝘁𝗿𝗮𝗻𝘀𝗮𝗰𝘁𝗶𝗼𝗻 𝗿𝗲𝗹𝗶𝗮𝗯𝗶𝗹𝗶𝘁𝘆 and 𝘀𝘁𝗿𝗲𝗮𝗺𝗹𝗶𝗻𝗲𝗱 𝗼𝗽𝗲𝗿𝗮𝘁𝗶𝗼𝗻𝗮𝗹 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄𝘀 for payment processing systems. I am passionate about 𝗺𝗲𝗻𝘁𝗼𝗿𝗶𝗻𝗴 𝗮𝗻𝗱 𝗸𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲 𝘀𝗵𝗮𝗿𝗶𝗻𝗴, having delivered 𝗵𝗮𝗻𝗱𝘀-𝗼𝗻 𝘁𝗿𝗮𝗶𝗻𝗶𝗻𝗴 in 𝗰𝗹𝗼𝘂𝗱 𝘁𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀, 𝗞𝘂𝗯𝗲𝗿𝗻𝗲𝘁𝗲𝘀, 𝗮𝗻𝗱 𝗮𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻. My proactive approach helps me anticipate system challenges and create 𝗿𝗼𝗯𝘂𝘀𝘁, 𝘀𝗰𝗮𝗹𝗮𝗯𝗹𝗲 𝘀𝗼𝗹𝘂𝘁𝗶𝗼𝗻𝘀 𝘁𝗵𝗮𝘁 𝗲𝗻𝗵𝗮𝗻𝗰𝗲 𝘀𝗲𝗰𝘂𝗿𝗶𝘁𝘆, 𝗰𝗼𝗺𝗽𝗹𝗶𝗮𝗻𝗰𝗲, 𝗮𝗻𝗱 𝗼𝗽𝗲𝗿𝗮𝘁𝗶𝗼𝗻𝗮𝗹 𝗲𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝗰𝘆. Dedicated to 𝗰𝗼𝗻𝘁𝗶𝗻𝘂𝗼𝘂𝘀 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴, I stay updated with 𝗲𝗺𝗲𝗿𝗴𝗶𝗻𝗴 𝘁𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀 and thrive on contributing to 𝘁𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗮𝘁𝗶𝘃𝗲 𝗽𝗿𝗼𝗷𝗲𝗰𝘁𝘀 that push boundaries in technology.