Decoding Pascal's Triangle: A Step-by-Step Java Guide

Pascal's Triangle, a visual representation of binomial coefficients, is a cornerstone of combinatorics and probability. In this blog post, we'll dissect a Java implementation that generates Pascal's Triangle, calculates specific values, and retrieves entire rows, all with detailed step-by-step explanations.
Understanding Pascal's Triangle
Pascal's Triangle is constructed by placing a '1' at the top and then adding the two numbers directly above each position to find the number below. Rows and elements within each row are numbered starting from 0.
Core Concept: nCr (Combinations)
Each number in Pascal's Triangle corresponds to a combination, denoted as nCr (or "n choose r"), which represents the number of ways to choose 'r' items from a set of 'n' items.
Java Implementation and Step-by-Step Explanation
Let's break down the Java code and understand how it works through examples.
Java
package Arrays;
import java.util.ArrayList;
import java.util.List;
public class PascalsTriangle {
// Calculates nCr (n choose r)
public static int nCr(int n, int r) {
int res = 1;
for (int i = 0; i < r; i++) {
res = res * (n - i);
res = res / (i + 1);
}
return res;
}
// Calculates the value at a specific row and column
public static int pascalRow(int n, int r) {
return nCr(n - 1, r - 1);
}
// Generates an entire row of Pascal's Triangle
public static List<Integer> pascalEntireRow(int n) {
List<Integer> ans = new ArrayList<Integer>();
for (int i = 1; i <= n; i++) {
ans.add(nCr(n - 1, i - 1));
}
return ans;
}
// Generates the entire Pascal's Triangle up to a given number of rows
public static List<List<Integer>> pascals(int num) {
List<List<Integer>> ans = new ArrayList();
for (int i = 1; i <= num; i++) {
List<Integer> row = new ArrayList<Integer>();
for (int j = 1; j <= i; j++) {
row.add(nCr(i - 1, j - 1));
}
ans.add(row);
}
return ans;
}
public static void main(String[] args) {
System.out.println(pascals(5));
System.out.println("Pascal Traingle Value at row 5 and col 3 is " + pascalRow(5, 3));
System.out.println("Entire Pascal Traingle Value at row 5 " + pascalEntireRow(4));
}
}
Step-by-Step Explanation:
nCr(int n, int r)
:This method calculates the combination nCr.
It initializes
res
to 1.The
for
loop iteratesr
times.In each iteration, it multiplies
res
by(n - i)
and divides it by(i + 1)
. This avoids calculating factorials directly, which can lead to overflow.It returns the calculated
res
.
pascalRow(int n, int r)
:This method calculates the value at a specific row
n
and columnr
of Pascal's Triangle.It calls
nCr(n - 1, r - 1)
because the rows and columns are 0-indexed.It returns the result of
nCr
.
pascalEntireRow(int n)
:This method generates an entire row
n
of Pascal's Triangle.It creates an
ArrayList
calledans
to store the row elements.The
for
loop iterates from 1 ton
.In each iteration, it calculates
nCr(n - 1, i - 1)
and adds it toans
.It returns the
ans
list.
pascals(int num)
:This method generates Pascal's Triangle up to
num
rows.It creates a
List<List<Integer>>
calledans
to store the triangle.The outer
for
loop iterates from 1 tonum
to generate each row.Inside the outer loop, it creates an
ArrayList
calledrow
to store the elements of the current row.The inner
for
loop iterates from 1 toi
to generate each element in the row.In each inner loop iteration, it calculates
nCr(i - 1, j - 1)
and adds it torow
.After the inner loop completes, it adds
row
toans
.It returns the
ans
list.
main(String[] args)
:System.out.println(pascals(5));
prints the first 5 rows of Pascal's Triangle.System.out.println("Pascal Traingle Value at row 5 and col 3 is " + pascalRow(5, 3));
prints the value at row 5, column 3 (which isnCr(4, 2)
).System.out.println("Entire Pascal Traingle Value at row 5 " + pascalEntireRow(4));
prints the 4th row of Pascal's triangle since the method pascalEntireRow uses 0 based indexing, so pascalEntireRow(4) gives row 5.
Example Walkthrough: pascals(3)
i = 1:
row = [nCr(0, 0)] = [1]
,ans = [[1]]
i = 2:
row = [nCr(1, 0), nCr(1, 1)] = [1, 1]
,ans = [[1], [1, 1]]
i = 3:
row = [nCr(2, 0), nCr(2, 1), nCr(2, 2)] = [1, 2, 1]
,ans = [[1], [1, 1], [1, 2, 1]]
Output: [[1], [1, 1], [1, 2, 1]]
This step-by-step approach illuminates the logic behind the code, making Pascal's Triangle generation more accessible. Happy coding!
Subscribe to my newsletter
Read articles from Anurag Srivastava directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by
