Guide to Deploying a Scalable Django + DRF App on AWS with Docker, ECS, and Fargate

Ahmad W KhanAhmad W Khan
12 min read

Deploying a Django + DRF app in production isn’t as straightforward as running python manage.py runserver. For local development, Django's built-in development server works well enough, but it's not designed to handle high traffic, scale across multiple servers, or integrate with complex cloud infrastructure.

To deploy a production-ready Django app that is scalable, secure, and highly available, we need a more robust infrastructure. This is where Docker, AWS ECS, Fargate, and Kubernetes come in.

In this guide, we will create a containerized Django application, push it to a container registry (AWS ECR), deploy it on AWS using ECS with Fargate, and set up automatic scaling, load balancing, and monitoring. We'll also secure the app with HTTPS using AWS ACM (Certificate Manager), and store static/media files in AWS S3. Finally, we’ll explore how Kubernetes fits into the picture and why you may want to use it over ECS for complex setups.

If you follow along, you'll learn how to:
Dockerize a Django app
Create an AWS ECR repository
Deploy the app on AWS ECS using Fargate
Configure load balancing using AWS ALB
Set up auto-scaling
Store static and media files on AWS S3
Manage secrets securely using AWS Secrets Manager
Set up monitoring using AWS CloudWatch
Secure the app with HTTPS using AWS ACM
Optionally deploy using Kubernetes


Prerequisites

Before we begin, ensure that you have the following:

Basic Requirements:

  • Basic understanding of Docker

  • Familiarity with Django and DRF

  • AWS account with admin access

  • AWS CLI installed

  • Docker installed


Tools and Versions:

ToolVersionPurpose
Python3.11+Programming language
Django4.2+Web framework
DRF3.14+REST API framework
DockerLatestContainerization
AWS CLILatestAWS command-line interface
GunicornLatestProduction WSGI server
Postgres14+Database
Kubernetes (Optional)LatestContainer orchestration

1. Set Up a Django + DRF Project

Let’s begin by creating a new Django project and setting up DRF.


Step 1.1: Create a New Django Project

Create a project directory and a virtual environment:

mkdir django-aws-deploy
cd django-aws-deploy
python -m venv env
source env/bin/activate

Step 1.2: Install Django and DRF

Install Django, DRF, and Gunicorn:

pip install django djangorestframework gunicorn psycopg2-binary

Create a new Django project:

django-admin startproject myproject .

Create a DRF app:

python manage.py startapp api

Step 1.3: Configure DRF

Add rest_framework to INSTALLED_APPS in settings.py:

myproject/settings.py

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'rest_framework',
    'api',
]

Step 1.4: Create a Sample DRF Endpoint

api/views.py

from rest_framework.decorators import api_view
from rest_framework.response import Response

@api_view(['GET'])
def hello_world(request):
    return Response({'message': 'Hello World!'})

api/urls.py

from django.urls import path
from .views import hello_world

urlpatterns = [
    path('hello/', hello_world),
]

myproject/urls.py

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
    path('api/', include('api.urls')),
]

Test the endpoint:

python manage.py runserver

Navigate to:

http://127.0.0.1:8000/api/hello/

2. Dockerize the Django Project

To ensure our app runs consistently across different environments, we need to containerize it using Docker.


Step 2.1: Create a Dockerfile

Create a Dockerfile in the root of the project:

Dockerfile

# Use official Python image
FROM python:3.11-slim

# Environment settings
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

# Set working directory
WORKDIR /app

# Install dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy project files
COPY . .

# Collect static files
RUN python manage.py collectstatic --noinput

# Expose port
EXPOSE 8000

# Start server with Gunicorn
CMD ["gunicorn", "myproject.wsgi", "--bind", "0.0.0.0:8000", "--workers", "4"]

πŸ”Ή Step 2.2: Create Docker Compose for Local Development

docker-compose.yml

version: '3.8'

services:
  web:
    build:
      context: .
      dockerfile: Dockerfile
    ports:
      - "8000:8000"
    env_file:
      - .env
    volumes:
      - .:/app
    depends_on:
      - db

  db:
    image: postgres:14
    environment:
      POSTGRES_DB: mydb
      POSTGRES_USER: myuser
      POSTGRES_PASSWORD: mypassword
    ports:
      - "5432:5432"
    volumes:
      - postgres_data:/var/lib/postgresql/data

volumes:
  postgres_data:

Step 2.3: Create a .dockerignore File

Exclude unnecessary files from Docker builds:

.dockerignore

__pycache__
*.pyc
*.log
venv
node_modules
.env

Step 2.4: Build and Run Docker Containers

Build the Docker container:

docker-compose build

Run the container:

docker-compose up

Stop the container:

docker-compose down

Check running containers:

docker ps

Step 2.5: Debug Docker

Get logs:

docker logs <container-name>

Open a shell into the running container:

docker exec -it <container-name> bash

Step 2.6: Tag and Push Docker Image

  1. Authenticate Docker with AWS:
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin <account-id>.dkr.ecr.us-east-1.amazonaws.com
  1. Tag the Docker image:
docker tag myproject:latest <account-id>.dkr.ecr.us-east-1.amazonaws.com/myproject:latest
  1. Push to AWS ECR:
docker push <account-id>.dkr.ecr.us-east-1.amazonaws.com/myproject:latest

Why AWS ECS + Fargate?

Elastic Container Service (ECS) is Amazon’s native container orchestration service. It's similar to Kubernetes but tightly integrated with AWS infrastructure, making it easier to manage and scale.

Fargate allows you to run ECS containers without managing EC2 instances or infrastructure.
No need to provision EC2 instances
Fully managed by AWS
Scales automatically based on demand
Secure by default using IAM and VPC


  1. Create an ECS cluster using Fargate.

  2. Create a task definition to define the container settings.

  3. Create an ECS service to run the container.

  4. Set up an Application Load Balancer (ALB) for traffic routing.

  5. Set up auto-scaling based on traffic.

  6. Configure AWS Secrets Manager for securely handling sensitive information.

  7. Set up logging and monitoring using CloudWatch.


Create an ECS Cluster

An ECS Cluster is the foundational unit for deploying Docker containers on AWS.

  • Fargate will handle the underlying infrastructure.

  • We'll create a cluster that allows containers to scale based on load.


Create an ECS Cluster

  1. Open the AWS Management Console.

  2. Go to Elastic Container Service (ECS) β†’ Clusters β†’ Create Cluster.

  3. Select "Networking Only" (Fargate).

  4. Name the cluster β†’ django-cluster.

  5. Create the cluster.


Verify Cluster

Check that the cluster is created:

aws ecs list-clusters

Create an ECS Task Definition

A task definition is a blueprint that defines how a container should run in ECS:

  • Which Docker image to use

  • Memory and CPU limits

  • Logging configuration

  • Network mode


Create a New Task Definition

  1. Go to ECS β†’ Task Definitions β†’ Create Task Definition.

  2. Choose Fargate.

  3. Set the following:

    • Task Name: django-task

    • Task Role: Create a new role (ecsTaskExecutionRole)

    • Network Mode: awsvpc

    • CPU: 512

    • Memory: 1024


Define Container Settings

Add a container to the task definition:


Define Logging Settings

Enable logging to CloudWatch:

  • Log Driver: awslogs

  • Log Group: /ecs/django-app

  • Region: us-east-1

  • Stream Prefix: ecs


Environment Variables

Pass environment variables to the container:

KeyValue
DEBUGFalse
ALLOWED_HOSTS*
DATABASE_URLRetrieved from Secrets Manager
SECRET_KEYRetrieved from Secrets Manager

Add Health Check

Add a health check:

  • Protocol: HTTP

  • Path: /health/

  • Interval: 30 seconds

  • Timeout: 5 seconds

  • Healthy Threshold: 2

  • Unhealthy Threshold: 2


Save Task Definition

Save the task definition.


Create an ECS Service

An ECS Service allows you to run and maintain a specified number of instances of a task definition.


Create Service

  1. Go to ECS β†’ Create Service

  2. Select "Fargate" as the launch type.

  3. Cluster: django-cluster

  4. Service Type: Replica

  5. Number of tasks: 2 (for high availability)


Define Networking Settings

  1. Choose an existing VPC.

  2. Select at least two subnets in different Availability Zones.

  3. Create a new Security Group:

    • Allow inbound traffic on port 80 (HTTP)

    • Allow inbound traffic on port 443 (HTTPS)

    • Allow inbound traffic on port 8000 (from Load Balancer)


Enable Auto Scaling

  1. Enable auto-scaling.

  2. Set up a policy based on CPU utilization:

    • Scale up at 70% CPU

    • Scale down at 30% CPU

    • Minimum tasks = 2

    • Maximum tasks = 10


Save Service

Save the ECS service.


Set Up an Application Load Balancer (ALB)

An ALB will distribute incoming traffic to the ECS tasks.


Create an ALB

  1. Go to EC2 β†’ Load Balancers β†’ Create Load Balancer

  2. Choose Application Load Balancer

  3. Scheme: Internet-facing

  4. Security Group: Use the ECS security group


Create a Target Group

  1. Go to Target Groups

  2. Create a target group for HTTP traffic:

    • Protocol: HTTP

    • Port: 8000

  3. Register your ECS tasks in the target group.


Attach Target Group to ALB

  1. Go to Listeners β†’ Add listener

  2. Protocol: HTTP

  3. Forward traffic to the target group


Test the Deployment

Find the ALB's DNS name:

aws elbv2 describe-load-balancers --query "LoadBalancers[].DNSName"

Test the endpoint:

curl http://<ALB-DNS-Name>/api/hello/

If everything is set up correctly, you'll see:

{"message": "Hello World!"}

Secure with HTTPS (AWS ACM)

AWS ACM (Certificate Manager) provides free SSL certificates.

Request Certificate

  1. Go to ACM β†’ Request Certificate

  2. Use DNS validation

  3. Attach to ALB

Add HTTPS Listener

  1. Go to ALB β†’ Listeners

  2. Add listener for HTTPS (443)

  3. Forward traffic to the ECS target group

Force HTTPS in Django

settings.py

SECURE_SSL_REDIRECT = True
SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True

Update the Health Check Endpoint

Add a health check for ECS:

api/views.py

@api_view(['GET'])
def health(request):
    return Response({"status": "healthy"})

api/urls.py

urlpatterns = [
    path('health/', health),
]

Restart ECS Service

After making these changes, restart the ECS service:

aws ecs update-service --cluster django-cluster --service django-service --force-new-deployment

Overview of AWS Architecture

The architecture we'll build will look like this:

                          +---------------+
                           |   Route 53    |
                           +---------------+
                                   |
                           +---------------+
                           |   AWS ACM      |   <-- SSL Certificate
                           +---------------+
                                   |
                   +--------------------------------+
                   |    AWS Application Load Balancer |
                   +--------------------------------+
                            |             |
+---------------------+  +---------------------+  +---------------------+
|      ECS Task       |  |      ECS Task       |  |      ECS Task       |
|    (Gunicorn)       |  |    (Gunicorn)       |  |    (Gunicorn)       |
+---------------------+  +---------------------+  +---------------------+
            |                       |                        |
+----------------------+  +----------------------+  +----------------------+
|    AWS Fargate        |  |    AWS Fargate        |  |    AWS Fargate        |
+----------------------+  +----------------------+  +----------------------+
            |                       |                        |
+----------------------+  +----------------------+  +----------------------+
|      AWS VPC          |  |      AWS VPC          |  |      AWS VPC          |
+----------------------+  +----------------------+  +----------------------+
            |                       |                        |
+-----------------------+
|     AWS RDS (Postgres) |
+-----------------------+
            |
+-----------------------+
|     AWS S3 (Static)    |
+-----------------------+
            |
+-----------------------+
| AWS Secrets Manager    |
+-----------------------+

Set Up AWS ECS and Fargate

Amazon ECS (Elastic Container Service) allows you to run Docker containers at scale. Fargate lets you run ECS containers without provisioning or managing EC2 instances β€” AWS manages the infrastructure for you.


Create an ECS Cluster

  1. Go to ECS β†’ Clusters β†’ Create Cluster

  2. Choose "Networking Only (Fargate)"

  3. Name the cluster β†’ django-cluster

  4. Create the cluster


Create a Task Definition

A task definition is a blueprint for running containers in ECS.

  1. Go to ECS β†’ Task Definitions β†’ Create New

  2. Launch Type β†’ Fargate

  3. Network Mode β†’ awsvpc

  4. Task Size

    • CPU: 512 (0.5 vCPU)

    • Memory: 1024 MB (1 GB)


Define Container Settings

ParameterValue
Container Namedjango-app
Imageaccount-id.dkr.ecr.us-east-1.amazonaws.com/myproject:latest
Port8000
EssentialYes

Set Logging Configuration

Configure logs to be sent to CloudWatch:

  1. Log Driver β†’ awslogs

  2. Log Group β†’ /ecs/django-app

  3. Region β†’ us-east-1

  4. Stream Prefix β†’ ecs


Environment Variables

KeyValue
DEBUGFalse
ALLOWED_HOSTS*
DATABASE_URLRetrieved from Secrets Manager
SECRET_KEYRetrieved from Secrets Manager

Create ECS Service

  1. Go to ECS β†’ Create Service

  2. Choose:

    • Launch Type: Fargate

    • Cluster: django-cluster

    • Service Type: Replica

    • Number of tasks: 2 (for high availability)

  3. Networking:

    • VPC β†’ Select existing VPC

    • Subnets β†’ Select at least two subnets in different Availability Zones

    • Security Group β†’ Create new Security Group

  4. Health Check Grace Period: 60 seconds

  5. Enable Auto-Scaling:

    • Minimum tasks = 2

    • Maximum tasks = 10

    • Scale at 70% CPU

    • Scale down at 30% CPU


Create Security Group

  1. Create a new security group for ECS:

  2. Inbound Rules:

    • Allow HTTP (80) from 0.0.0.0/0

    • Allow HTTPS (443) from 0.0.0.0/0

    • Allow port 8000 from Load Balancer

  3. Outbound Rules:

    • Allow All traffic

Create an Application Load Balancer (ALB)

  1. Go to EC2 β†’ Load Balancers

  2. Create a new Application Load Balancer

  3. Type: Internet-facing

  4. Security Group: Use the ECS security group

  5. Target Group: Create a target group for port 8000


Health Check Settings

  • Protocol β†’ HTTP

  • Path β†’ /health/

  • Interval β†’ 30 seconds

  • Timeout β†’ 5 seconds

  • Unhealthy threshold β†’ 2

  • Healthy threshold β†’ 2


Attach Load Balancer to ECS

  1. Go to ECS β†’ Services

  2. Edit the service β†’ Add load balancer

  3. Attach to target group


Update the Django Health Endpoint

api/views.py

@api_view(['GET'])
def health(request):
    return Response({'status': 'healthy'})

api/urls.py

urlpatterns = [
    path('health/', health),
]

Update Allowed Hosts in Django

settings.py

ALLOWED_HOSTS = ['my-load-balancer-url.us-east-1.elb.amazonaws.com']

Apply Changes

  1. Update ECS Service:
aws ecs update-service --cluster django-cluster --service django-service --force-new-deployment
  1. Watch deployment logs:
aws logs tail /ecs/django-app --follow

Scaling Strategy

AWS ECS Auto Scaling allows scaling based on CloudWatch metrics.

Example Scaling Policy

  1. CPU > 70% β†’ Add 1 task

  2. CPU < 30% β†’ Remove 1 task

  3. Minimum = 2 tasks

  4. Maximum = 10 tasks


Kubernetes (Optional)

ECS works well for most production needs, but for multi-container, complex workloads, Kubernetes is a better option.


Set Up Kubernetes on AWS (EKS)

  1. Install EKS CLI:
brew install eksctl
  1. Create Cluster:
ksctl create cluster --name django-cluster --region us-east-1 --nodes 3
  1. Deploy to Kubernetes:
kubectl apply -f deployment.yaml
  1. Expose service:
kubectl expose deployment django-deploy --type=LoadBalancer --port=80 --target-port=8000

You've now deployed a production-grade Django + DRF application using Docker, AWS ECS, and Fargate. Your app is running on a highly available, auto-scaling infrastructure with secure HTTPS, automated scaling, and centralized logging.

What We Have Achieved:

βœ”οΈ Dockerized our Django + DRF app
βœ”οΈ Pushed the Docker image to AWS ECR
βœ”οΈ Deployed using ECS with Fargate
βœ”οΈ Configured load balancing with ALB
βœ”οΈ Secured with AWS ACM and HTTPS
βœ”οΈ Automated scaling and monitoring with CloudWatch

Reach out for discussing your infrastructure and deployment strategies: AhmadWKhan.com

Happy Deployment! :)

0
Subscribe to my newsletter

Read articles from Ahmad W Khan directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Ahmad W Khan
Ahmad W Khan