Uml Dl

2 min read
#UML Dictionary Learning
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d
# Load the Olivetti Faces dataset
def load_faces():
dataset = fetch_olivetti_faces(shuffle=True, random_state=0)
images = dataset.images # Shape (400, 64, 64)
return images
# Add synthetic Gaussian noise to images
def add_noise(images, noise_level=0.1):
noisy_images = images + noise_level * np.random.randn(*images.shape)
noisy_images = np.clip(noisy_images, 0, 1) # Clip values to [0, 1]
return noisy_images
# Extract patches from images
def extract_patches(images, patch_size=(8, 8), max_patches=200):
patches = []
for img in images:
img_patches = extract_patches_2d(img, patch_size, max_patches=max_patches, random_state=0)
patches.append(img_patches)
patches = np.vstack(patches) # Stack all patches into a single array
patches = patches.reshape(patches.shape[0], -1) # Flatten patches
return patches
# Learn the dictionary
def learn_dictionary(patches, n_components=100, alpha=1, max_iter=500):
dico = MiniBatchDictionaryLearning(
n_components=n_components,
alpha=alpha,
max_iter=max_iter,
random_state=0
)
dico.fit(patches)
return dico
# Reconstruct an image using the learned dictionary
def reconstruct_image(image, dico, patch_size=(8, 8)):
patches = extract_patches_2d(image, patch_size)
patches = patches.reshape(patches.shape[0], -1) # Flatten patches
patches -= np.mean(patches, axis=0)
patches /= np.std(patches, axis=0)
# Transform patches using the learned dictionary
code = dico.transform(patches)
# Reconstruct patches using the dictionary components
reconstructed_patches = np.dot(code, dico.components_)
reconstructed_patches = reconstructed_patches.reshape(len(patches), *patch_size)
# Reconstruct the image from patches (you may want to use `reconstruct_from_patches_2d` for this)
reconstructed_image = reconstruct_from_patches_2d(reconstructed_patches, image.shape)
return reconstructed_image
# Visualize original, noisy, and denoised images
def visualize_results(original, noisy, denoised):
plt.figure(figsize=(6, 2))
plt.subplot(1, 3, 1)
plt.imshow(original, cmap='gray')
plt.title('Original Image')
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(noisy, cmap='gray')
plt.title('Noisy Image')
plt.axis('off')
plt.subplot(1, 3, 3)
plt.imshow(denoised, cmap='gray')
plt.title('Denoised Image')
plt.axis('off')
plt.tight_layout()
plt.show()
# Main function
def main():
# Load the dataset
images = load_faces()
# Select a single image for denoising
original_image = images[399] # you can change the image index like 0,1,2,3,..,400 etc
# Add synthetic noise to the image
noisy_image = add_noise(original_image, noise_level=0.1)
# Extract patches from the noisy image
patches = extract_patches(noisy_image[np.newaxis, ...]) # Add batch dimension
# Learn the dictionary from noisy patches
dico = learn_dictionary(patches)
# Reconstruct the denoised image using the learned dictionary
denoised_image = reconstruct_image(noisy_image, dico)
# Visualize the results
visualize_results(original_image, noisy_image, denoised_image)
# Run the program
if __name__ == "__main__":
main()
0
Subscribe to my newsletter
Read articles from Invoker directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by
