₹30 LPA MLOps Developer Cheat Sheet

ADITYA KALIDASADITYA KALIDAS
3 min read

1. Foundations You Must Master


Programming:

  • Python (must-have)

    • Bash scripting

    • Basic Go

    • YAML (IaC, K8s, etc.)

  • ML/DS Basics:

    • Supervised vs Unsupervised Learning

    • Feature Engineering

    • Model Evaluation Metrics

    • Building ML Pipelines

  • Version Control:

    • Git

    • GitHub workflows

    • GitOps principles

  • Linux & Shell:

    • Bash scripting

    • Filesystem commands

    • Crontab, Permissions, CLI tools


2. Cloud Mastery

  • Major Platforms:

    • Azure, AWS, GCP
  • Key Concepts:

    • VMs, Object Storage, IAM, Networking

    • Compute options (VMs, Containers, Serverless)

  • Cloud-Native Tools:

    • AKS, EKS, GKE

    • CI/CD pipelines using native tooling


3. Containers + Orchestration

  • Docker:

    • Build, tag, run, push images

    • Dockerfiles, Volumes, Networks

  • Kubernetes:

    • Pods, Services, Deployments

    • ConfigMaps, Secrets, Helm Charts

  • Kustomize:

    • Advanced config management for K8s deployments

4. MLOps-Specific Tools

  • Model Tracking:

    • MLflow, Weights & Biases, Neptune.ai
  • Experimentation:

    • Jupyter, Papermill, TensorBoard
  • Workflow Orchestration:

    • Kubeflow Pipelines, Airflow, Prefect
  • Model Serving:

    • KServe, FastAPI, BentoML
  • Monitoring:

    • Prometheus, Grafana, ELK Stack
  • CI/CD:

    • GitHub Actions, GitLab CI, Jenkins, ArgoCD
  • IaC:

    • Terraform, Pulumi, Ansible

5. DevOps & Infra Skills (Non-Negotiable)

  • CI/CD Pipelines:

    • Automate ML lifecycle: train, test, deploy
  • Infrastructure as Code (IaC):

    • Terraform for reproducible infra

    • Pulumi/Ansible as secondary skills

  • Monitoring & Logging:

    • Track system + model metrics

    • Detect model drift, failures

  • Security:

    • Secrets management

    • IAM, RBAC controls


6. Certifications That Matter

  • Azure:

    • AZ-900 (Fundamentals)

    • AZ-104 (Admin)

    • DP-100 (ML Engineer)

  • AWS:

    • SAA-C03 (Architect)

    • MLS-C01 (ML Specialty)

  • GCP:

    • ACE (Associate Cloud Engineer)

    • Professional ML Engineer

  • Others:

    • Terraform Associate

    • CKA (Certified Kubernetes Administrator)


7. Mind-Blowing Portfolio Projects

  • End-to-End ML Pipeline:

    • From data ingestion to deployment
  • Kubeflow on Kubernetes:

    • DSL pipelines, KServe autoscaling
  • MLflow + GitHub Actions:

    • CI/CD integrated model registry
  • Monitoring Stack:

    • Prometheus + Grafana dashboards
  • IaC Infra Deployment:

    • Terraform config for cloud infra
  • Model Drift Detection + Retraining Pipelines

  • Feature Store Integration:

    • Tecton / Feast + DVC

8. Get Noticed: Resume, LinkedIn, GitHub

  • Projects:

    • Deployed and documented E2E projects
  • GitHub:

    • Clean structure, README, docker-compose examples
  • LinkedIn:

    • Share progress, open-source work, problem-solving posts
  • Resume:

    • Impact-driven, technical badge icons, quantifiable metrics

9. Practice & Resources

  • MLOps:

  • Kubernetes:

  • Terraform:

    • HashiCorp Learn

    • YouTube series (e.g. FreeCodeCamp)

  • CI/CD:

    • GitHub Actions Docs

    • ArgoCD Tutorials

  • ML Basics:

    • Fast.ai, Andrew Ng’s ML + DL courses

0
Subscribe to my newsletter

Read articles from ADITYA KALIDAS directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

ADITYA KALIDAS
ADITYA KALIDAS