๐Ÿ•ต๏ธโ€โ™‚๏ธ Unmasking the Truth Behind AI Agents, LLM Wrappers & How to Build One โ€“ Scooby-Doo Style!

Ever interacted with those AI agents that not only solve your problems but also chat like they're human?
Plot twist: Most of these โ€œintelligentโ€ assistants are simply sophisticated wrappers around potent LLMs like GPT-4, Claude, or Gemini. ๐Ÿ‘€
Let's crack this case wide openโ€”Scooby-Doo style! Grab your magnifying glass and join us on a fun, mystery-solving journey into the inner workings of AI agents. ๐Ÿงฉ๐Ÿถ


๐Ÿค– What Is an AI Agent?

An AI agent is a system that:

โœ… Perceives its environment
โœ… Decides what to do next
โœ… Takes actions toward a goal

But IRL? Most agents are built by:

  • Prompting a powerful LLM

  • Giving it tools (like calculator, browser)

  • Adding memory (to remember stuff)

  • Using wrappers like LangChain to orchestrate everything

Itโ€™s not magic. Itโ€™s modular software. ๐Ÿ› ๏ธ


๐Ÿ”ง How AI Agents Are Built (Architecture)

๐Ÿง‘โ€๐Ÿ’ป UI โ†’ Wrapper โ†’ LLM โ†’ Tools + Memory

Breakdown:

  • ๐Ÿง‘โ€๐Ÿ’ป UI: CLI, chatbot, or dashboard

  • ๐Ÿงฉ Wrapper: LangChain, AutoGen = agentโ€™s manager

  • ๐Ÿง  LLM: GPT-4 = the brain

  • ๐Ÿง  Memory: Pinecone, Chroma = remembers past chats

  • ๐Ÿ”ง Tools: Search, API calls, calculator, file reader


WrapperWhat It Does
LangChainToolkit to build modular LLM apps & agents
AutoGenFramework for multi-agent chat + collab
CrewAIRole-based team agents that cooperate
LlamaIndexHelps agents work with private/custom data
AgentVerseVisual no-code playground for agents

๐Ÿง  Whatโ€™s Inside the Agent (LLMs)

ModelProviderSuperpowers
GPT-4OpenAI๐Ÿ”ฅ Reasoning + tool usage
Claude 3Anthropic๐Ÿง  Long context + ethical filters
GeminiGoogle๐ŸŽจ Multimodal: text + images
LLaMAMeta๐Ÿ˜ Open-source & community-driven
MistralOSS๐Ÿ’จ Fast + lightweight

๐Ÿ› ๏ธ Let's Build a Mini Agent (Code + Explanation)

๐Ÿ“ฆ First, install the tools:

pip install langchain openai

๐Ÿง  Starter Code with Comments:

# basic_agent.py
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, Tool
from langchain.agents.agent_types import AgentType
import os

# โœ… Set your OpenAI API key (required for GPT-4)
os.environ["OPENAI_API_KEY"] = "your-openai-key"

# ๐Ÿ”ง Define a custom tool (like a simple calculator)
def add_nums(a, b):
    return str(int(a) + int(b))  # Returns a string (LangChain expects this)

# ๐Ÿ“ฆ Register the tool in LangChain
tools = [
    Tool(
        name="Adder",
        func=lambda x: add_nums(*x.split()),  # Parses "5 10" into a=5, b=10
        description="Adds two numbers separated by a space"
    )
]

# ๐Ÿง  Create the core LLM brain
llm = ChatOpenAI(model_name="gpt-4", temperature=0)

# ๐Ÿงฉ Create the agent and give it the tool
agent = initialize_agent(
    tools,  # Available tools
    llm,  # The LLM brain
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,  # Agent strategy
    verbose=True  # Show reasoning in the console
)

# ๐ŸŽฏ Ask the agent to solve a task using a tool
result = agent.run("Use the Adder tool to add 12 and 30.")
print(result)

๐Ÿ’ก What Just Happened?

๐Ÿ”„ LangChain did the orchestration:

  1. Understood the user query
    โ†’ "Use the Adder tool to add 12 and 30."

  2. Used GPT-4 to reason
    โ†’ โ€œHmm, I should use the Adder tool.โ€

  3. Called the Adder tool
    โ†’ Passed โ€œ12 30โ€ โ†’ Got 42

  4. Gave the final answer

So your agent appears smartโ€”but it's actually GPT-4 using tools you defined! ๐Ÿ› ๏ธ๐Ÿง 


๐Ÿ“ฆ Real Agent Use Cases

  • ๐Ÿง  AutoGPT โ€“ Fully autonomous, recursive agents

  • ๐Ÿค AutoGen โ€“ Multiple agents chatting together

  • ๐Ÿ’ฌ Customer Bots โ€“ Trained on FAQs/internal docs

  • ๐Ÿงพ Research Agents โ€“ Multi-step reasoning on documents


๐ŸŽฏ Recap: Build Your Own AI Agent (Steps)

  1. Pick an LLM โ†’ GPT-4, Claude, etc.

  2. Pick a Wrapper โ†’ LangChain, AutoGen

  3. Add Tools โ†’ Browser, APIs, etc.

  4. Add Memory โ†’ Pinecone, Chroma

  5. Write Prompts โ†’ Define behavior

  6. Iterate โ†’ Test, debug, improve


๐Ÿ”— Bonus Resources


๐Ÿงต Want More?

Thinking of a follow-up on:

  • ๐Ÿ”„ LangChain Workflows

  • ๐Ÿง  AutoGen Multi-Agent Chats

  • ๐Ÿ“Š Evaluating Agent Performance

Drop a ๐Ÿ” in the comments & Iโ€™ll cook it up!


0
Subscribe to my newsletter

Read articles from Amit kumar Meena directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Amit kumar Meena
Amit kumar Meena

Iโ€™m a Computer Science student at NIT Warangal, passionate about coding, entrepreneurship, and self-improvement. I dive deep into software development, share insights on startups, and explore personal growth. Join me on my journey as I unravel the tech world and foster innovation through my blog.