Building an MCP Client Using LangGraph

AgentR DevAgentR Dev
5 min read

Building an MCP Client Using LangGraph: A Comprehensive Guide for AI Application Development

The integration of Anthropic's Model Context Protocol (MCP) with LangGraph represents a paradigm shift in building language model (LM)-powered applications. This guide provides a technical deep dive into constructing robust MCP clients using LangGraph's agent framework, enabling seamless connectivity to MCP servers while maintaining operational flexibility and scalability.

Architectural Foundations of MCP-LangGraph Integration

MCP Protocol Components

The Model Context Protocol operates through three core components:

  1. MCP Host: The application layer (e.g., LangGraph agent) requiring tool access
  2. MCP Client: Protocol implementation managing server connections
  3. MCP Server: Specialized service exposing tools through standardized endpoints

LangGraph agents interact with MCP via client adapters that translate protocol messages into executable tool signatures. The langchain-mcp-adapters package provides critical bridging functionality, converting MCP tool definitions into LangChain-compatible tool objects.

LangGraph Execution Model

LangGraph's state-machine architecture enables sophisticated tool orchestration through:

  • Nodes: Represent discrete operations (LLM calls, tool executions)
  • Edges: Define control flow based on execution outcomes
  • State Management: Maintains context across multi-step operations

This model aligns perfectly with MCP's session-based interaction pattern, where tools maintain state across invocations.

Client Implementation Methodology

Environment Configuration

Begin by installing core dependencies:

pip install langchain-mcp-adapters langgraph langchain-openai

For JavaScript implementations:

npm install @langchain/mcp-adapters @langchain/langgraph

Server Connection Management

The MultiServerMCPClient class enables concurrent connections to multiple MCP servers:

from langchain_mcp_adapters.client import MultiServerMCPClient

server_config = {
    "math": {
        "command": "python",
        "args": ["/absolute/path/math_server.py"],
        "transport": "stdio"
    },
    "weather": {
        "url": "http://localhost:8000/sse",
        "transport": "sse"
    }
}

async with MultiServerMCPClient(servers=server_config) as client:
    tools = await client.get_tools()

This configuration supports heterogeneous transport protocols (stdio, SSE, websockets) and automatic connection pooling.

Tool Discovery and Binding

Dynamically load tools from connected servers:

from langgraph.prebuilt import create_react_agent

class ToolBindingAgent:
    def __init__(self, client):
        self.client = client
        self.tool_cache = {}

    async def refresh_tools(self):
        """Periodically update available tools"""
        self.tool_cache = await self.client.get_tools()

    def create_agent(self, model):
        return create_react_agent(
            model=model,
            tools=self.tool_cache.values(),
            check_tool_availability=True
        )

The agent automatically validates tool signatures against MCP server schemas during initialization.

Core Execution Workflow

Session Lifecycle Management

async def execute_query(query: str, agent: ToolBindingAgent):
    session = await agent.client.new_session()
    try:
        await session.initialize()
        response = await agent.process_query(query)
        return response
    finally:
        await session.close()

Sessions maintain:

  • Authentication contexts
  • Tool-specific state
  • Conversation history
  • Rate limiting counters

Tool Invocation Pattern

LangGraph's reactive architecture handles tool execution through:

  1. Intent Recognition: LLM parses user query
  2. Tool Selection: Graph routes to appropriate node
  3. Parameter Binding: Auto-convert natural language to tool schema
  4. Execution: MCP client dispatches to server
  5. Result Processing: Format outputs for LLM consumption

    class ToolExecutionNode:
     async def __call__(self, state):
         tool_name = state["selected_tool"]
         params = state["tool_params"]
    
         server = self.tool_registry.get_server(tool_name)
         result = await server.execute_tool(
             tool_name,
             params,
             session=state["session_id"]
         )
         return {"tool_result": result}
    

Advanced Implementation Patterns

Multi-Server Orchestration

Implement cross-server workflows using LangGraph's branching:

graph LR
    A[User Query] --> B{Intent Analysis}
    B -->|Math| C[Math Server Tools]
    B -->|Weather| D[Weather Server Tools]
    C --> E[Result Aggregation]
    D --> E
    E --> F[Response Generation]
async def multi_server_execution(query):
    async with MultiServerMCPClient(...) as client:
        math_tools = await client.get_tools("math")
        weather_tools = await client.get_tools("weather")

        router = create_router_agent([math_tools, weather_tools])
        route = await router.route(query)

        if route["server"] == "math":
            result = await math_server.execute(route["tool"], route["params"])
        elif route["server"] == "weather":
            result = await weather_server.execute(route["tool"], route["params"])

        return format_response(result)

Dynamic Tool Hot-Swapping

Implement live tool updates without agent restart:

class HotSwapToolManager:
    def __init__(self, client):
        self.client = client
        self.tools = {}
        self.lock = asyncio.Lock()

    async def monitor_servers(self):
        while True:
            async with self.lock:
                current_servers = await client.list_servers()
                for server in current_servers:
                    if server not in self.tools:
                        tools = await client.get_tools(server)
                        self.tools[server] = tools
            await asyncio.sleep(300)

Operational Considerations

Error Handling Framework

Implement robust error recovery:

class ResilientMCPClient:
    async def execute_with_retry(self, tool_call, max_retries=3):
        for attempt in range(max_retries):
            try:
                return await self.client.execute(tool_call)
            except MCPConnectionError:
                await self.reconnect()
            except MCPTimeoutError:
                if attempt == max_retries - 1:
                    raise
                await asyncio.sleep(2 ** attempt)

    async def reconnect(self):
        await self.client.close()
        await self.client.connect()
        await self.client.authenticate()

Performance Optimization

Critical strategies include:

  • Connection Pooling: Maintain warm connections to frequent servers
  • Result Caching: Cache idempotent tool responses
  • Batch Processing: Combine multiple tool requests
  • Load Balancing: Distribute requests across server clusters

    class MCPConnectionPool:
      def __init__(self, max_connections=10):
          self.pool = []
          self.max_connections = max_connections
    
      async def get_connection(self, server):
          for conn in self.pool:
              if conn.server == server and conn.is_idle():
                  return conn
          if len(self.pool) < self.max_connections:
              new_conn = await MCPConnection.create(server)
              self.pool.append(new_conn)
              return new_conn
          return await self.recycle_connection()
    

Deployment and Monitoring

CI/CD Pipeline Integration

Sample GitHub Actions workflow:

name: MCP Client Deployment

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-python@v4
      - run: pip install -r requirements.txt
      - run: pytest tests/

  deploy:
    runs-on: ubuntu-latest
    needs: test
    steps:
      - uses: aws-actions/configure-aws-credentials@v2
      - run: |
          docker build -t mcp-client .
          docker tag mcp-client:latest $ECR_REGISTRY/mcp-client:$GITHUB_SHA
          docker push $ECR_REGISTRY/mcp-client:$GITHUB_SHA

Observability Stack

Essential monitoring components:

  1. Metrics: Tool execution latency, Server connection success rate, Session duration statistics
  2. Logging: Structured logs with MCP-specific context
  3. Tracing: Distributed tracing across MCP calls ```python from opentelemetry import trace

tracer = trace.get_tracer("mcp_client")

async def execute_tool(tool_name, params): with tracer.start_as_current_span(tool_name) as span: span.set_attributes({ "mcp.server": current_server, "mcp.tool_version": tool_metadata.version }) try: result = await tool_invocation() span.set_status(Status(StatusCode.OK)) return result except Exception as e: span.record_exception(e) span.set_status(Status(StatusCode.ERROR)) raise


## Future Directions and Considerations

### Emerging MCP Patterns
1. **Federated Learning Integration**:
```python
class FederatedMCPServer:
    def update_model(self, gradients):
        self.model.apply_gradients(gradients)

    @mcp.tool()
    async def train_model(self, dataset: MCPDataRef):
        local_gradients = compute_gradients(dataset)
        return submit_to_coordinator(local_gradients)
  1. Semantic Tool Discovery:
    async def semantic_tool_discovery(query):
     embedding = llm.encode(query)
     similar_tools = vector_db.search(
         embedding, 
         filter={"status": "active"}
     )
     return rank_tools_by_relevance(similar_tools)
    
  2. Automated Pipeline Generation:
    def generate_pipeline(tool_registry):
     builder = PipelineBuilder()
     for tool in the tool_registry:
         builder.add_node(
             name=tool.name,
             operation=tool.execute,
             input_schema=tool.input_schema
         )
     return builder.compile()
    

This comprehensive approach to building MCP clients with LangGraph enables developers to create sophisticated AI applications leveraging the growing ecosystem of MCP services.

0
Subscribe to my newsletter

Read articles from AgentR Dev directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

AgentR Dev
AgentR Dev