Implementing Model for Instruction Fine Tuning using PyTorch

Nitin SharmaNitin Sharma
15 min read

In our exploration of pretraining a large language model (LLM), we discovered that the process primarily focuses on teaching the model to generate text one word at a time. As a result, a pretrained LLM excels in tasks related to text completion, effortlessly predicting and continuing sentences. However, it often struggles with understanding and following specific instructions. In this article, we aim to address this limitation by providing strategies and techniques designed to enhance the model's ability to comprehend and adhere to user instructions more effectively.

Preparing a dataset for supervised instruction finetuning


def download_and_load_file(file_path, url):

    if not os.path.exists(file_path):
        with urllib.request.urlopen(url) as response:
            text_data = response.read().decode("utf-8")
        with open(file_path, "w", encoding="utf-8") as file:
            file.write(text_data)

    with open(file_path, "r", encoding="utf-8") as file:
        data = json.load(file)

    return data
file_path = "instruction-data.json"
url = (
    "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch"
    "/main/ch07/01_main-chapter-code/instruction-data.json"
)

data = download_and_load_file(file_path, url)
print("Number of entries:", len(data))

Each item in the data list loaded from the JSON file above is a dictionary in the following form

print("Example entry:\n", data[50])
Example entry:
 {'instruction': 'Identify the correct spelling of the following word.', 
'input': 'Ocassion',
 'output': "The correct spelling is 'Occasion.'"}

Instruction finetuning is commonly known as "supervised instruction finetuning." This training process involves using a carefully curated dataset that contains explicitly defined input-output pairs, enabling the model to learn from clear examples.

There are various methods to structure these input-output pairs for the large language model (LLM). For instance, the figure below showcases two distinct formatting styles that were applied when training the Alpaca and Phi-3 LLMs. Each format serves to effectively convey information to the model, allowing it to grasp the relationships between inputs and desired outputs during the training phase.

We use Alpaca-style prompt formatting, which was the original prompt template for instruction finetuning.

Lets format the input in Alpaca style through a function and print one of the entry

def format_input(entry):
    instruction_text = (
        f"Below is an instruction that describes a task. "
        f"Write a response that appropriately completes the request."
        f"\n\n### Instruction:\n{entry['instruction']}"
    )

    input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else ""

    return instruction_text + input_text

model_input = format_input(data[50])
desired_response = f"\n\n### Response:\n{data[50]['output']}"

print(model_input + desired_response)
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Identify the correct spelling of the following word.

### Input:
Ocassion

### Response:
The correct spelling is 'Occasion.'

Lets divide the data into training , validation and test data set

train_portion = int(len(data) * 0.85)  # 85% for training
test_portion = int(len(data) * 0.1)    # 10% for testing
val_portion = len(data) - train_portion - test_portion  # Remaining 5% for validation

train_data = data[:train_portion]
test_data = data[train_portion:train_portion + test_portion]
val_data = data[train_portion + test_portion:]
print("Training set length:", len(train_data))
print("Validation set length:", len(val_data))
print("Test set length:", len(test_data))

We will develop a specialized class for a PyTorch dataset that will preprocess all input data by performing tokenization in advance. This custom dataset will ensure that all inputs are ready for model training, streamlining the workflow and enhancing efficiency.

import torch
from torch.utils.data import Dataset


class InstructionDataset(Dataset):
    def __init__(self, data, tokenizer):
        self.data = data

        # Pre-tokenize texts
        self.encoded_texts = []
        for entry in data:
            instruction_plus_input = format_input(entry)
            response_text = f"\n\n### Response:\n{entry['output']}"
            full_text = instruction_plus_input + response_text
            self.encoded_texts.append(
                tokenizer.encode(full_text)
            )

    def __getitem__(self, index):
        return self.encoded_texts[index]

    def __len__(self):
        return len(self.data)

In order to enhance the efficiency of our training process, we aim to gather multiple training examples in a single batch. To achieve this, it is necessary to ensure that all input sequences are of a uniform length. To facilitate this standardization, we utilize a specific token designated as the padding token, which fills in the gaps in shorter sequences. This approach allows us to streamline the training procedure and improve model performance.

import tiktoken
tokenizer = tiktoken.get_encoding("gpt2")

print(tokenizer.encode("<|endoftext|>", allowed_special={"<|endoftext|>"}))
[50256]

We will create a custom "collate" function specifically designed for our data loader. This function will handle the preparation of training examples in each batch by ensuring that all examples are padded to the same length. This is essential for batch processing, as neural networks typically require uniform input sizes. However, it's important to note that while each batch will have examples of the same length, different batches can still have varying lengths based on the data they contain. This approach will enhance the efficiency of our training process while accommodating the inherent variability in our dataset.

def custom_collate_draft_1(
    batch,
    pad_token_id=50256,
    device="cpu"
):
    # Find the longest sequence in the batch
    # and increase the max length by +1, which will add one extra
    # padding token below
    batch_max_length = max(len(item)+1 for item in batch)

    # Pad and prepare inputs
    inputs_lst = []

    for item in batch:
        new_item = item.copy()
        # Add an <|endoftext|> token
        new_item += [pad_token_id]
        # Pad sequences to batch_max_length
        padded = (
            new_item + [pad_token_id] *
            (batch_max_length - len(new_item))
        )
        # Via padded[:-1], we remove the extra padded token
        # that has been added via the +1 setting in batch_max_length
        # (the extra padding token will be relevant in later codes)
        inputs = torch.tensor(padded[:-1])
        inputs_lst.append(inputs)

    # Convert list of inputs to tensor and transfer to target device
    inputs_tensor = torch.stack(inputs_lst).to(device)
    return inputs_tensor

Lets test this function

inputs_1 = [0, 1, 2, 3, 4]
inputs_2 = [5, 6]
inputs_3 = [7, 8, 9]

batch = (
    inputs_1,
    inputs_2,
    inputs_3
)

print(custom_collate_draft_1(batch))
tensor([[    0,     1,     2,     3,     4],
        [    5,     6, 50256, 50256, 50256],
        [    7,     8,     9, 50256, 50256]])

The targets used for training the model are derived by shifting the input tokens one position to the right. This setup enables the language model to learn the task of predicting the subsequent token based on the preceding context. Essentially, the model learns to anticipate what comes next in a sequence, enhancing its ability to generate coherent and contextually appropriate text.

def custom_collate_draft_2(
    batch,
    pad_token_id=50256,
    device="cpu"
):
    # Find the longest sequence in the batch
    batch_max_length = max(len(item)+1 for item in batch)

    # Pad and prepare inputs
    inputs_lst, targets_lst = [], []

    for item in batch:
        new_item = item.copy()
        # Add an <|endoftext|> token
        new_item += [pad_token_id]
        # Pad sequences to max_length
        padded = (
            new_item + [pad_token_id] *
            (batch_max_length - len(new_item))
        )
        inputs = torch.tensor(padded[:-1])  # Truncate the last token for inputs
        targets = torch.tensor(padded[1:])  # Shift +1 to the right for targets
        inputs_lst.append(inputs)
        targets_lst.append(targets)

    # Convert list of inputs to tensor and transfer to target device
    inputs_tensor = torch.stack(inputs_lst).to(device)
    targets_tensor = torch.stack(targets_lst).to(device)
    return inputs_tensor, targets_tensor

inputs, targets = custom_collate_draft_2(batch)
print(inputs)
print(targets)

tensor([[    0,     1,     2,     3,     4],
        [    5,     6, 50256, 50256, 50256],
        [    7,     8,     9, 50256, 50256]])
tensor([[    1,     2,     3,     4, 50256],
        [    6, 50256, 50256, 50256, 50256],
        [    8,     9, 50256, 50256, 50256]])

In our approach, we implement a specific parameter known as ignore_index which allows us to replace all padding token IDs with a designated value. The primary goal of introducing this ignore_index is to ensure that we can effectively disregard any padding values when calculating the loss in our model training process.

To clarify, this means that the token IDs that correspond to the placeholder value 50256 are substituted with -100. Consequently, when employing the cross-entropy loss function, any training example associated with the -100 label is entirely ignored during loss computation.

In PyTorch, this mechanism is supported by the built-in functionality of the cross_entropy function, which includes an ignore_index parameter set to -100 by default. This setup allows the model to conveniently skip over and not consider any examples that contain this specific label, optimizing the training process.

def custom_collate_fn(
    batch,
    pad_token_id=50256,
    ignore_index=-100,
    allowed_max_length=None,
    device="cpu"
):
    # Find the longest sequence in the batch
    batch_max_length = max(len(item)+1 for item in batch)

    # Pad and prepare inputs and targets
    inputs_lst, targets_lst = [], []

    for item in batch:
        new_item = item.copy()
        # Add an <|endoftext|> token
        new_item += [pad_token_id]
        # Pad sequences to max_length
        padded = (
            new_item + [pad_token_id] *
            (batch_max_length - len(new_item))
        )
        inputs = torch.tensor(padded[:-1])  # Truncate the last token for inputs
        targets = torch.tensor(padded[1:])  # Shift +1 to the right for targets

        # New: Replace all but the first padding tokens in targets by ignore_index
        mask = targets == pad_token_id
        indices = torch.nonzero(mask).squeeze()
        if indices.numel() > 1:
            targets[indices[1:]] = ignore_index

        # New: Optionally truncate to maximum sequence length
        if allowed_max_length is not None:
            inputs = inputs[:allowed_max_length]
            targets = targets[:allowed_max_length]

        inputs_lst.append(inputs)
        targets_lst.append(targets)

    # Convert list of inputs and targets to tensors and transfer to target device
    inputs_tensor = torch.stack(inputs_lst).to(device)
    targets_tensor = torch.stack(targets_lst).to(device)

    return inputs_tensor, targets_tensor

inputs, targets = custom_collate_fn(batch)
print(inputs)
print(targets)

Creating data loaders for an instruction dataset

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")

print("Device:", device)
Device: mps
from functools import partial

customized_collate_fn = partial(
    custom_collate_fn,
    device=device,
    allowed_max_length=1024
)

Now we create custom python DataLoader class for training , validation and test data set

from torch.utils.data import DataLoader


num_workers = 0
batch_size = 8

torch.manual_seed(123)

train_dataset = InstructionDataset(train_data, tokenizer)
train_loader = DataLoader(
    train_dataset,
    batch_size=batch_size,
    collate_fn=customized_collate_fn,
    shuffle=True,
    drop_last=True,
    num_workers=num_workers
)
val_dataset = InstructionDataset(val_data, tokenizer)
val_loader = DataLoader(
    val_dataset,
    batch_size=batch_size,
    collate_fn=customized_collate_fn,
    shuffle=False,
    drop_last=False,
    num_workers=num_workers
)

test_dataset = InstructionDataset(test_data, tokenizer)
test_loader = DataLoader(
    test_dataset,
    batch_size=batch_size,
    collate_fn=customized_collate_fn,
    shuffle=False,
    drop_last=False,
    num_workers=num_workers
)

Lets build chatGPT-2 model like we build in the previous blog and load it with pre-trained weights

class MultiHeadAttention(nn.Module):
    def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
        super().__init__()
        assert d_out % num_heads == 0, "d_out must be divisible by n_heads"

        self.d_out = d_out
        self.num_heads = num_heads
        self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim

        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
        self.dropout = nn.Dropout(dropout)
        self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))

    def forward(self, x):
        b, num_tokens, d_in = x.shape

        keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
        queries = self.W_query(x)
        values = self.W_value(x)

        # We implicitly split the matrix by adding a `num_heads` dimension
        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)

        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
        keys = keys.transpose(1, 2)
        queries = queries.transpose(1, 2)
        values = values.transpose(1, 2)

        # Compute scaled dot-product attention (aka self-attention) with a causal mask
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head

        # Original mask truncated to the number of tokens and converted to boolean
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

        # Use the mask to fill attention scores
        attn_scores.masked_fill_(mask_bool, -torch.inf)

        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
        attn_weights = self.dropout(attn_weights)

        # Shape: (b, num_tokens, num_heads, head_dim)
        context_vec = (attn_weights @ values).transpose(1, 2)

        # Combine heads, where self.d_out = self.num_heads * self.head_dim
        context_vec = context_vec.reshape(b, num_tokens, self.d_out)
        context_vec = self.out_proj(context_vec)  # optional projection

        return context_vec
class LayerNorm(nn.Module):
    def __init__(self, emb_dim):
        super().__init__()
        self.eps = 1e-5
        self.scale = nn.Parameter(torch.ones(emb_dim))
        self.shift = nn.Parameter(torch.zeros(emb_dim))

    def forward(self, x):
        mean = x.mean(dim=-1, keepdim=True)
        var = x.var(dim=-1, keepdim=True, unbiased=False)
        norm_x = (x - mean) / torch.sqrt(var + self.eps)
        return self.scale * norm_x + self.shift


class GELU(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(
            torch.sqrt(torch.tensor(2.0 / torch.pi)) *
            (x + 0.044715 * torch.pow(x, 3))
        ))


class FeedForward(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
            GELU(),
            nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
        )

    def forward(self, x):
        return self.layers(x)
class TransformerBlock(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.att = MultiHeadAttention(
            d_in=cfg["emb_dim"],
            d_out=cfg["emb_dim"],
            context_length=cfg["context_length"],
            num_heads=cfg["n_heads"],
            dropout=cfg["drop_rate"],
            qkv_bias=cfg["qkv_bias"])
        self.ff = FeedForward(cfg)
        self.norm1 = LayerNorm(cfg["emb_dim"])
        self.norm2 = LayerNorm(cfg["emb_dim"])
        self.drop_shortcut = nn.Dropout(cfg["drop_rate"])

    def forward(self, x):
        # Shortcut connection for attention block
        shortcut = x
        x = self.norm1(x)
        x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_shortcut(x)
        x = x + shortcut  # Add the original input back

        # Shortcut connection for feed-forward block
        shortcut = x
        x = self.norm2(x)
        x = self.ff(x)
        x = self.drop_shortcut(x)
        x = x + shortcut  # Add the original input back

        return x

Now build the model using above individual components we built

class GPTModel(nn.Module):
    def __init__(self, cfg):
        super().__init__()
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
        self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
        self.drop_emb = nn.Dropout(cfg["drop_rate"])

        self.trf_blocks = nn.Sequential(
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])

        self.final_norm = LayerNorm(cfg["emb_dim"])
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)

    def forward(self, in_idx):
        batch_size, seq_len = in_idx.shape
        tok_embeds = self.tok_emb(in_idx)
        pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
        x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
        x = self.drop_emb(x)
        x = self.trf_blocks(x)
        x = self.final_norm(x)
        logits = self.out_head(x)
        return logits

Lets Load the pretrained weights into this model

from gpt_download import download_and_load_gpt2
settings, params = download_and_load_gpt2(model_size="355M", models_dir="gpt2")
def assign(left, right):
    if left.shape != right.shape:
        raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
    return torch.nn.Parameter(torch.tensor(right))
BASE_CONFIG = {
    "vocab_size": 50257,     # Vocabulary size
    "context_length": 1024,  # Context length
    "drop_rate": 0.0,        # Dropout rate
    "qkv_bias": True         # Query-key-value bias
}

model_configs = {
    "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
    "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
    "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
    "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}

CHOOSE_MODEL = "gpt2-medium (355M)"

BASE_CONFIG.update(model_configs[CHOOSE_MODEL])

model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")

gpt = GPTModel(BASE_CONFIG)
gpt.eval();
import numpy as np

def load_weights_into_gpt(gpt, params):
    gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
    gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])

    for b in range(len(params["blocks"])):
        q_w, k_w, v_w = np.split(
            (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.weight = assign(
            gpt.trf_blocks[b].att.W_query.weight, q_w.T)
        gpt.trf_blocks[b].att.W_key.weight = assign(
            gpt.trf_blocks[b].att.W_key.weight, k_w.T)
        gpt.trf_blocks[b].att.W_value.weight = assign(
            gpt.trf_blocks[b].att.W_value.weight, v_w.T)

        q_b, k_b, v_b = np.split(
            (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
        gpt.trf_blocks[b].att.W_query.bias = assign(
            gpt.trf_blocks[b].att.W_query.bias, q_b)
        gpt.trf_blocks[b].att.W_key.bias = assign(
            gpt.trf_blocks[b].att.W_key.bias, k_b)
        gpt.trf_blocks[b].att.W_value.bias = assign(
            gpt.trf_blocks[b].att.W_value.bias, v_b)

        gpt.trf_blocks[b].att.out_proj.weight = assign(
            gpt.trf_blocks[b].att.out_proj.weight, 
            params["blocks"][b]["attn"]["c_proj"]["w"].T)
        gpt.trf_blocks[b].att.out_proj.bias = assign(
            gpt.trf_blocks[b].att.out_proj.bias, 
            params["blocks"][b]["attn"]["c_proj"]["b"])

        gpt.trf_blocks[b].ff.layers[0].weight = assign(
            gpt.trf_blocks[b].ff.layers[0].weight, 
            params["blocks"][b]["mlp"]["c_fc"]["w"].T)
        gpt.trf_blocks[b].ff.layers[0].bias = assign(
            gpt.trf_blocks[b].ff.layers[0].bias, 
            params["blocks"][b]["mlp"]["c_fc"]["b"])
        gpt.trf_blocks[b].ff.layers[2].weight = assign(
            gpt.trf_blocks[b].ff.layers[2].weight, 
            params["blocks"][b]["mlp"]["c_proj"]["w"].T)
        gpt.trf_blocks[b].ff.layers[2].bias = assign(
            gpt.trf_blocks[b].ff.layers[2].bias, 
            params["blocks"][b]["mlp"]["c_proj"]["b"])

        gpt.trf_blocks[b].norm1.scale = assign(
            gpt.trf_blocks[b].norm1.scale, 
            params["blocks"][b]["ln_1"]["g"])
        gpt.trf_blocks[b].norm1.shift = assign(
            gpt.trf_blocks[b].norm1.shift, 
            params["blocks"][b]["ln_1"]["b"])
        gpt.trf_blocks[b].norm2.scale = assign(
            gpt.trf_blocks[b].norm2.scale, 
            params["blocks"][b]["ln_2"]["g"])
        gpt.trf_blocks[b].norm2.shift = assign(
            gpt.trf_blocks[b].norm2.shift, 
            params["blocks"][b]["ln_2"]["b"])

    gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
    gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
    gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])


load_weights_into_gpt(gpt, params)
gpt.to(device);
BASE_CONFIG = {
    "vocab_size": 50257,     # Vocabulary size
    "context_length": 1024,  # Context length
    "drop_rate": 0.0,        # Dropout rate
    "qkv_bias": True         # Query-key-value bias
}

model_configs = {
    "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
    "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
    "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
    "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}

CHOOSE_MODEL = "gpt2-medium (355M)"

BASE_CONFIG.update(model_configs[CHOOSE_MODEL])

model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(
    model_size=model_size,
    models_dir="gpt2"
)

model = GPTModel(BASE_CONFIG)
load_weights_into_gpt(model, params)
model.eval();

Let's see how model performs on one of the validation tasks

torch.manual_seed(123)

input_text = format_input(val_data[0])
print(input_text)
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Convert the active sentence to passive: 'The chef cooks the meal every day.'
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):

    # For-loop is the same as before: Get logits, and only focus on last time step
    for _ in range(max_new_tokens):
        idx_cond = idx[:, -context_size:]
        with torch.no_grad():
            logits = model(idx_cond)
        logits = logits[:, -1, :]

        # New: Filter logits with top_k sampling
        if top_k is not None:
            # Keep only top_k values
            top_logits, _ = torch.topk(logits, top_k)
            min_val = top_logits[:, -1]
            logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

        # New: Apply temperature scaling
        if temperature > 0.0:
            logits = logits / temperature

            # Apply softmax to get probabilities
            probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)

            # Sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)

        # Otherwise same as before: get idx of the vocab entry with the highest logits value
        else:
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)

        if idx_next == eos_id:  # Stop generating early if end-of-sequence token is encountered and eos_id is specified
            break

        # Same as before: append sampled index to the running sequence
        idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)

    return idx

def text_to_token_ids(text, tokenizer):
    encoded = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
    return encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
    flat = token_ids.squeeze(0)  # remove batch dimension
    return tokenizer.decode(flat.tolist())

token_ids = generate(
    model=model,
    idx=text_to_token_ids(input_text, tokenizer),
    max_new_tokens=35,
    context_size=BASE_CONFIG["context_length"],
    eos_id=50256,
)
generated_text = token_ids_to_text(token_ids, tokenizer)
response_text = (
    generated_text[len(input_text):]
    .replace("### Response:", "")
    .strip()
)
print(response_text)
The chef cooks the meal every day.

### Instruction:

Convert the active sentence to passive: 'The chef cooks the

Now we can fine tune the model using cross entropy loss function

Let's calculate the initial training and validation set loss before we start training (goal is to minimize the loss)

model.to(device)

torch.manual_seed(123)

with torch.no_grad():
    train_loss = calc_loss_loader(train_loader, model, device, num_batches=5)
    val_loss = calc_loss_loader(val_loader, model, device, num_batches=5)

print("Training loss:", train_loss)
print("Validation loss:", val_loss)
Training loss: 3.8259089469909666
Validation loss: 3.7619338035583496
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
    model.eval()
    with torch.no_grad():
        train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
        val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
    model.train()
    return train_loss, val_loss

def generate_and_print_sample(model, tokenizer, device, start_context):
    model.eval()
    context_size = model.pos_emb.weight.shape[0]
    encoded = text_to_token_ids(start_context, tokenizer).to(device)
    with torch.no_grad():
        token_ids = generate_text_simple(
            model=model, idx=encoded,
            max_new_tokens=50, context_size=context_size
        )
        decoded_text = token_ids_to_text(token_ids, tokenizer)
        print(decoded_text.replace("\n", " "))  # Compact print format
    model.train()

Now we train the model

import time

start_time = time.time()

torch.manual_seed(123)

optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)

num_epochs = 2

train_losses, val_losses, tokens_seen = train_model_simple(
    model, train_loader, val_loader, optimizer, device,
    num_epochs=num_epochs, eval_freq=5, eval_iter=5,
    start_context=format_input(val_data[0]), tokenizer=tokenizer
)

end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
Ep 2 (Step 000190): Train loss 0.341, Val loss 0.648
Ep 2 (Step 000195): Train loss 0.330, Val loss 0.633
Ep 2 (Step 000200): Train loss 0.313, Val loss 0.631
Ep 2 (Step 000205): Train loss 0.354, Val loss 0.628
Ep 2 (Step 000210): Train loss 0.365, Val loss 0.629
Ep 2 (Step 000215): Train loss 0.394, Val loss 0.634
Ep 2 (Step 000220): Train loss 0.301, Val loss 0.647
Ep 2 (Step 000225): Train loss 0.347, Val loss 0.661
Ep 2 (Step 000230): Train loss 0.297, Val loss 0.659
Below is an instruction that describes a task. Write a response that appropriately completes the request.  ### Instruction: Convert the active sentence to passive: 'The chef cooks the meal every day.'  ### Response: The meal is cooked every day by the chef.<|endoftext|>The following is an instruction that describes a task. Write a response that appropriately completes the request.  ### Instruction: What is the capital of the United Kingdom
Training completed in 0.93 minutes

Lets plot the training and validation losses


epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)

Let's take a look at the responses generated by the fine tuned model

torch.manual_seed(123)


for entry in test_data[:3]:

    input_text = format_input(entry)

    token_ids = generate(
        model=model,
        idx=text_to_token_ids(input_text, tokenizer).to(device),
        max_new_tokens=256,
        context_size=BASE_CONFIG["context_length"],
        eos_id=50256
    )
    generated_text = token_ids_to_text(token_ids, tokenizer)
    response_text = (
        generated_text[len(input_text):]
        .replace("### Response:", "")
        .strip()
)

    print(input_text)
    print(f"\nCorrect response:\n>> {entry['output']}")
    print(f"\nModel response:\n>> {response_text.strip()}")
    print("-------------------------------------")
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Rewrite the sentence using a simile.

### Input:
The car is very fast.

Correct response:
>> The car is as fast as lightning.

Model response:
>> The car is as fast as a bullet.
-------------------------------------
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
What type of cloud is typically associated with thunderstorms?

Correct response:
>> The type of cloud typically associated with thunderstorms is cumulonimbus.

Model response:
>> The type of cloud associated with thunderstorms is a cumulus cloud.
-------------------------------------
0
Subscribe to my newsletter

Read articles from Nitin Sharma directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Nitin Sharma
Nitin Sharma