Project-Based Learning Roadmap for Generative AI

Project-Based Learning Roadmap for Generative AI (Transitioning from Flutter Development)

As an expert in AI with experience at top organizations like Google, Meta, OpenAI, Hugging Face, Google DeepMind, and Anthropic, I’ve crafted a project-based learning roadmap to help you upskill in generative AI as a beginner coming from Flutter development. This roadmap emphasizes hands-on projects to build practical skills, incorporating fine-tuning, running models locally, and deployment, while leveraging your Flutter expertise for front-end integration. Each phase includes a project to solidify learning, with resources and timelines tailored for 8-12 months at 10-15 hours per week, as of May 27, 2025.


Roadmap Overview

  • Objective: Learn generative AI through practical projects, focusing on fine-tuning, local execution, and deployment, with Flutter integration for mobile apps.

  • Approach: Progress from foundational skills to advanced applications, building a portfolio of projects to showcase expertise.

  • Key Considerations:

    • Use Python for AI development, leveraging libraries like PyTorch, TensorFlow, and Hugging Face.

    • Integrate Flutter for user interfaces, connecting to AI models via APIs.

    • Optimize for local execution with quantization and use cloud resources (e.g., Google Colab) for larger models.

    • Stay updated with trends via Hugging Face, arXiv, and X posts (e.g., follow @huggingface, @karpathy).


Phase 1: Foundations and First Project (1-2 Months)

Goal: Build foundational skills in Python and machine learning, culminating in a simple ML project.

  1. Learn Python (2-3 Weeks)

  2. Machine Learning Basics (3-4 Weeks)

  3. Project 1: Image Classification App (2-3 Weeks)

    • Description: Build a Flutter app that uses a pre-trained ML model (e.g., MobileNet) to classify images, integrating with a local or cloud-based model.

    • Steps:

      • Train a simple image classifier using Scikit-learn or TensorFlow on a dataset like CIFAR-10.

      • Save the model using TensorFlow’s SavedModel format.

      • Create a Flutter app to capture/upload images and call the model via a local Flask API or cloud endpoint.

      • Use Flutter HTTP Package for API integration.

    • Tools: Scikit-learn/TensorFlow, Flask, Flutter, Kaggle for datasets.

    • Outcome: A mobile app that classifies images (e.g., cats vs. dogs), with a basic understanding of ML pipelines.

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert';

void main() {
  runApp(ImageClassifierApp());
}

class ImageClassifierApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Image Classifier',
      home: ImageClassifierScreen(),
    );
  }
}

class ImageClassifierScreen extends StatefulWidget {
  @override
  _ImageClassifierScreenState createState() => _ImageClassifierScreenState();
}

class _ImageClassifierScreenState extends State<ImageClassifierScreen> {
  final TextEditingController _controller = TextEditingController();
  String _result = 'Upload an image to classify';

  Future<void> _classifyImage(String imageUrl) async {
    final response = await http.post(
      Uri.parse('http://localhost:5000/classify'), // Replace with your Flask API endpoint
      headers: {'Content-Type': 'application/json'},
      body: jsonEncode({'image_url': imageUrl}),
    );

    if (response.statusCode == 200) {
      setState(() {
        _result = jsonDecode(response.body)['prediction'];
      });
    } else {
      setState(() {
        _result = 'Error: Could not classify image';
      });
    }
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('Image Classifier')),
      body: Column(
        children: [
          Expanded(child: Center(child: Text(_result))),
          Padding(
            padding: EdgeInsets.all(8.0),
            child: Row(
              children: [
                Expanded(
                  child: TextField(
                    controller: _controller,
                    decoration: InputDecoration(hintText: 'Enter image URL'),
                  ),
                ),
                IconButton(
                  icon: Icon(Icons.send),
                  onPressed: () {
                    if (_controller.text.isNotEmpty) {
                      _classifyImage(_controller.text);
                      _controller.clear();
                    }
                  },
                ),
              ],
            ),
          ),
        ],
      ),
    );
  }
}

Phase 2: Introduction to Generative AI and Text Generation Project (2-3 Months)

Goal: Understand generative AI models and build a text-based project.

  1. Learn Transformers (3-4 Weeks)

    • Focus: Attention mechanisms, self-attention, encoder-decoder architectures, pre-trained models.

    • Resources:

    • Practice: Experiment with Hugging Face’s pipeline API for text generation (e.g., GPT-2).

  2. Fine-Tuning Basics (2-3 Weeks)

    • Focus: Transfer learning, LoRA for parameter-efficient fine-tuning, dataset preparation.

    • Resources:

    • Practice: Fine-tune a small model like DistilBERT on a text dataset (e.g., IMDB reviews).

  3. Project 2: Chatbot App with Fine-Tuned Model (3-4 Weeks)

    • Description: Build a Flutter chatbot app using a fine-tuned language model (e.g., GPT-2) for domain-specific responses (e.g., movie recommendations).

    • Steps:

      • Fine-tune GPT-2 on a custom dataset (e.g., IMDB dataset) using Hugging Face Transformers.

      • Save the fine-tuned model and serve it via a FastAPI endpoint.

      • Create a Flutter app to interact with the API, displaying chat responses.

      • Run the model locally (if hardware permits) or on Google Colab.

    • Tools: Hugging Face Transformers, FastAPI, Flutter, Google Colab for cloud GPUs.

    • Outcome: A Flutter chatbot app with a fine-tuned model, demonstrating text generation and API integration.

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert';

void main() {
  runApp(ChatbotApp());
}

class ChatbotApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'AI Chatbot',
      home: ChatbotScreen(),
    );
  }
}

class ChatbotScreen extends StatefulWidget {
  @override
  _ChatbotScreenState createState() => _ChatbotScreenState();
}

class _ChatbotScreenState extends State<ChatbotScreen> {
  final TextEditingController _controller = TextEditingController();
  String _response = '';

  Future<void> _sendMessage(String message) async {
    final response = await http.post(
      Uri.parse('http://localhost:8000/generate'), // Replace with your FastAPI endpoint
      headers: {
        'Content-Type': 'application/json',
      },
      body: jsonEncode({'input': message}),
    );

    if (response.statusCode == 200) {
      setState(() {
        _response = jsonDecode(response.body)['generated_text'];
      });
    } else {
      setState(() {
        _response = 'Error: Could not connect to AI model';
      });
    }
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('Movie Chatbot')),
      body: Column(
        children: [
          Expanded(child: Center(child: Text(_response))),
          Padding(
            padding: EdgeInsets.all(8.0),
            child: Row(
              children: [
                Expanded(
                  child: TextField(
                    controller: _controller,
                    decoration: InputDecoration(hintText: 'Ask about movies...'),
                  ),
                ),
                IconButton(
                  icon: Icon(Icons.send),
                  onPressed: () {
                    if (_controller.text.isNotEmpty) {
                      _sendMessage(_controller.text);
                      _controller.clear();
                    }
                  },
                ),
              ],
            ),
          ),
        ],
      ),
    );
  }
}

Phase 3: Image Generation and Local Execution (2-3 Months)

Goal: Master image-based generative models and run them locally.

  1. Learn GANs and Diffusion Models (3-4 Weeks)

  2. Run Models Locally (2-3 Weeks)

    • Focus: Set up PyTorch/TensorFlow, optimize models with quantization, manage memory constraints.

    • Hardware: Minimum 16GB RAM, 4GB GPU (e.g., NVIDIA GTX 1650); use Google Colab if needed.

    • Resources:

    • Practice: Run a lightweight model (e.g., DistilGPT-2 or quantized Stable Diffusion) locally.

  3. Project 3: Image Generation App (3-4 Weeks)

    • Description: Build a Flutter app that generates images from text prompts using a pre-trained or fine-tuned Stable Diffusion model, running locally or via a cloud API.

    • Steps:

      • Use a pre-trained Stable Diffusion model from Hugging Face, optimized for local execution with quantization.

      • Fine-tune the model on a custom dataset (e.g., Pokémon dataset).

      • Serve the model via FastAPI or Hugging Face Inference Endpoints.

      • Create a Flutter app to send text prompts and display generated images.

    • Tools: Stable Diffusion, Hugging Face, FastAPI, Flutter, Anaconda for environment management.

    • Outcome: A Flutter app generating images from text prompts, showcasing local model execution.

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert';

void main() {
  runApp(ImageGenApp());
}

class ImageGenApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Image Generator',
      home: ImageGenScreen(),
    );
  }
}

class ImageGenScreen extends StatefulWidget {
  @override
  _ImageGenScreenState createState() => _ImageGenScreenState();
}

class _ImageGenScreenState extends State<ImageGenScreen> {
  final TextEditingController _controller = TextEditingController();
  String _imageUrl = '';

  Future<void> _generateImage(String prompt) async {
    final response = await http.post(
      Uri.parse('http://localhost:8000/generate-image'), // Replace with your FastAPI endpoint
      headers: {
        'Content-Type': 'application/json',
      },
      body: jsonEncode({'prompt': prompt}),
    );

    if (response.statusCode == 200) {
      setState(() {
        _imageUrl = jsonDecode(response.body)['image_url'];
      });
    } else {
      setState(() {
        _imageUrl = 'Error: Could not generate image';
      });
    }
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('AI Image Generator')),
      body: Column(
        children: [
          Expanded(
            child: Center(
              child: _imageUrl.startsWith('Error')
                  ? Text(_imageUrl)
                  : Image.network(_imageUrl, errorBuilder: (context, error, stackTrace) => Text('Failed to load image')),
            ),
          ),
          Padding(
            padding: EdgeInsets.all(8.0),
            child: Row(
              children: [
                Expanded(
                  child: TextField(
                    controller: _controller,
                    decoration: InputDecoration(hintText: 'Enter image prompt'),
                  ),
                ),
                IconButton(
                  icon: Icon(Icons.send),
                  onPressed: () {
                    if (_controller.text.isNotEmpty) {
                      _generateImage(_controller.text);
                      _controller.clear();
                    }
                  },
                ),
              ],
            ),
          ),
        ],
      ),
    );
  }
}

Phase 4: Deployment and Advanced Project (2-3 Months)

Goal: Deploy models and build an advanced project integrating AI and Flutter.

  1. Model Deployment Basics (2-3 Weeks)

  2. Advanced Deployment (2-3 Weeks)

    • Focus: Serverless deployment (AWS Lambda), edge deployment with ONNX, monitoring.

    • Resources:

    • Practice: Deploy a lightweight model to AWS Lambda and test with Flutter.

  3. Project 4: Text-to-Image Hybrid App (3-4 Weeks)

    • Description: Build a Flutter app combining a fine-tuned language model (e.g., GPT-2) and Stable Diffusion to generate images from user text inputs, deployed on AWS.

    • Steps:

      • Fine-tune GPT-2 for text processing and Stable Diffusion for image generation on custom datasets.

      • Deploy both models using FastAPI on AWS EC2 or Hugging Face Inference Endpoints.

      • Create a Flutter app to send text inputs, process responses, and display images.

      • Optimize models for local testing using quantization if hardware allows.

    • Tools: Hugging Face, FastAPI, AWS, Flutter, Hugging Face Datasets.

    • Outcome: A deployed hybrid app integrating text and image generation, showcasing full-stack AI skills.

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert';

void main() {
  runApp(TextToImageApp());
}

class TextToImageApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'Text-to-Image Generator',
      home: TextToImageScreen(),
    );
  }
}

class TextToImageScreen extends StatefulWidget {
  @override
  _TextToImageScreenState createState() => _TextToImageScreenState();
}

class _TextToImageScreenState extends State<TextToImageScreen> {
  final TextEditingController _controller = TextEditingController();
  String _imageUrl = '';
  String _processedText = '';

  Future<void> _generateContent(String input) async {
    // Step 1: Process text with GPT-2
    final textResponse = await http.post(
      Uri.parse('http://localhost:8000/process-text'), // Replace with your FastAPI endpoint
      headers: {'Content-Type': 'application/json'},
      body: jsonEncode({'input': input}),
    );

    if (textResponse.statusCode == 200) {
      final processedText = jsonDecode(textResponse.body)['processed_text'];
      setState(() {
        _processedText = processedText;
      });

      // Step 2: Generate image with Stable Diffusion
      final imageResponse = await http.post(
        Uri.parse('http://localhost:8000/generate-image'),
        headers: {'Content-Type': 'application/json'},
        body: jsonEncode({'prompt': processedText}),
      );

      if (imageResponse.statusCode == 200) {
        setState(() {
          _imageUrl = jsonDecode(imageResponse.body)['image_url'];
        });
      } else {
        setState(() {
          _imageUrl = 'Error: Could not generate image';
        });
      }
    } else {
      setState(() {
        _processedText = 'Error: Could not process text';
        _imageUrl = '';
      });
    }
  }

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('Text-to-Image Generator')),
      body: Column(
        children: [
          Expanded(
            child: Column(
              mainAxisAlignment: MainAxisAlignment.center,
              children: [
                Text(_processedText),
                SizedBox(height: 20),
                _imageUrl.startsWith('Error')
                    ? Text(_imageUrl)
                    : Image.network(_imageUrl, errorBuilder: (context, error, stackTrace) => Text('Failed to load image')),
              ],
            ),
          ),
          Padding(
            padding: EdgeInsets.all(8.0),
            child: Row(
              children: [
                Expanded(
                  child: TextField(
                    controller: _controller,
                    decoration: InputDecoration(hintText: 'Enter text prompt'),
                  ),
                ),
                IconButton(
                  icon: Icon(Icons.send),
                  onPressed: () {
                    if (_controller.text.isNotEmpty) {
                      _generateContent(_controller.text);
                      _controller.clear();
                    }
                  },
                ),
              ],
            ),
          ),
        ],
      ),
    );
  }
}

Phase 5: Portfolio and Community Engagement (2-3 Months)

Goal: Build a portfolio and network within the AI community.

  1. Polish Projects (3-4 Weeks)

    • Focus: Document all projects on GitHub with clear READMEs, including setup instructions, screenshots, and deployment details.

    • Practice: Create a Flutter-based portfolio website to showcase projects, using Flutter Web.

  2. Contribute to Open Source (2-3 Weeks)

    • Focus: Contribute to AI projects on GitHub (e.g., Hugging Face, PyTorch).

    • Resources:

    • Practice: Fix a bug or add a feature to an open-source project.

  3. Project 5: Portfolio Website with AI Demos (2-3 Weeks)

    • Description: Build a Flutter web app showcasing your AI projects, with live demos and links to GitHub.

    • Steps:

      • Use Flutter Web to create a portfolio site.

      • Embed links to deployed APIs and GitHub repositories.

      • Share on X, LinkedIn, and r/MachineLearning with hashtags like #GenerativeAI.

    • Tools: Flutter Web, GitHub Pages, X for promotion.

    • Outcome: A professional portfolio highlighting your generative AI and Flutter skills.

import 'package:flutter/material.dart';
import 'package:url_launcher/url_launcher.dart';

void main() {
  runApp(PortfolioApp());
}

class PortfolioApp extends StatelessWidget {
  @override
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'AI Portfolio',
      home: PortfolioScreen(),
    );
  }
}

class PortfolioScreen extends StatelessWidget {
  final List<Map<String, String>> projects = [
    {
      'title': 'Image Classifier',
      'description': 'A Flutter app for image classification using MobileNet.',
      'url': 'https://github.com/yourusername/image-classifier'
    },
    {
      'title': 'AI Chatbot',
      'description': 'A chatbot using fine-tuned GPT-2 for movie recommendations.',
      'url': 'https://github.com/yourusername/chatbot'
    },
    {
      'title': 'Image Generator',
      'description': 'Text-to-image generation using Stable Diffusion.',
      'url': 'https://github.com/yourusername/image-generator'
    },
    {
      'title': 'Text-to-Image Hybrid',
      'description': 'Combines GPT-2 and Stable Diffusion for text-to-image generation.',
      'url': 'https://github.com/yourusername/text-to-image'
    },
  ];

  @override
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(title: Text('My Generative AI Portfolio')),
      body: ListView.builder(
        itemCount: projects.length,
        itemBuilder: (context, index) {
          return ListTile(
            title: Text(projects[index]['title']!),
            subtitle: Text(projects[index]['description']!),
            onTap: () async {
              final url = projects[index]['url']!;
              if (await canLaunch(url)) {
                await launch(url);
              }
            },
          );
        },
      ),
    );
  }
}

Phase 6: Continuous Learning and Networking (Ongoing)

Goal: Stay updated and connect with the AI community.

  1. Follow Research and Trends

    • Resources:

    • Practice: Summarize one paper or blog post weekly.

  2. Join AI Communities

  3. Upskill Advanced Topics

    • Focus: Multimodal models, reinforcement learning, ethical AI.

    • Resources:

    • Practice: Experiment with multimodal models (e.g., CLIP) for future projects.


Additional Considerations

  • Hardware:

    • Minimum: 16GB RAM, 4GB GPU (e.g., NVIDIA GTX 1650).

    • Recommended: 32GB RAM, 8GB+ GPU (e.g., NVIDIA RTX 3060).

    • Use Google Colab Pro or AWS for larger models.

  • Ethics: Address biases and misuse in generative AI, referencing AI Ethics Guidelines.

  • Flutter Advantage: Use Flutter to create polished UIs, integrating with AI APIs for professional-grade apps.

  • X Insights: Recent posts highlight the popularity of fine-tuning small models (e.g., Mistral) and deploying via AWS, with tools like LoRA trending for efficiency.

Sample Timeline

MonthFocusProject/Milestone
1-2Python, ML BasicsImage Classification App
3-4Transformers, Fine-TuningChatbot App
5-6GANs, Diffusion, Local ExecutionImage Generation App
7-8DeploymentText-to-Image Hybrid App
9-10Portfolio, Open SourcePortfolio Website
11-12Networking, Advanced TopicsContribute to open source, share on X

Final Notes

  • Start Small: Use pre-trained models to minimize compute needs initially.

  • Portfolio Focus: Document projects thoroughly on GitHub to attract employers or collaborators.

  • Flutter Integration: Leverage your Flutter skills to stand out by building user-friendly AI apps.

  • Resources: For pricing on cloud services or APIs, check AWS or Hugging Face. For xAI’s API, visit x.ai/api.

This project-based roadmap ensures you gain practical generative AI skills while building a strong portfolio. Let me know if you need deeper guidance on any phase or project!

0
Subscribe to my newsletter

Read articles from Singaraju Saiteja directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Singaraju Saiteja
Singaraju Saiteja

I am an aspiring mobile developer, with current skill being in flutter.