Testing black-forest-labs/FLUX.1-dev


In this post, we try running black-forest-labs/FLUX.1-dev
on Nvidia RTX Pro 6000 machine.
AMD Ryzen 7 9800X3D 8-Core Processor
NVIDIA RTX PRO 6000 Blackwell Workstation Edition
Ubuntu 22.04
We using nvidia-driver-570-open
.
NVIDIA-SMI 570.153.02
Driver Version: 570.153.02
CUDA Version: 12.8
and Python 3.12.
First, log into Huggingface:
huggingface-cli login
You have to access terms from: https://huggingface.co/black-forest-labs/FLUX.1-dev.
Let’s set up the repo:
mkdir sprite-flux
cd sprite-flux
poetry init --name sprite-flux --python ^3.12 --no-interaction
poetry env use python3.12
eval $(poetry env activate)
poetry source add --priority=explicit torch-cu128 https://download.pytorch.org/whl/cu128
poetry add --source torch-cu128 torch torchvision torchaudio
poetry add protobuf sentencepiece
poetry run python -c "import torch; print(torch.__version__, torch.version.cuda, torch.cuda.is_available())" # -> 2.7.1+cu128 12.8 True
poetry add diffusers transformers accelerate xformers
Python Script
# scripts/inference/run_flux_retro_lora.py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt).images[0]
Running it inside poetry env.
poetry run python scripts/inference/run_flux_retro_lora.py
This just takes forever since it’s not using any GPUs. Let’s move it to GPU.
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
pipe.to("cuda") # 👈 THIS is what makes it actually use your GPU
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt).images[0]
image.save("output.png")
Now, it should produce something within reasonable amount of time.
If you run nvidia-smi
you should see something like:
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.153.02 Driver Version: 570.153.02 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA RTX PRO 6000 Blac... On | 00000000:01:00.0 Off | Off |
| 48% 84C P1 599W / 600W | 67227MiB / 97887MiB | 100% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 1202 G /usr/lib/xorg/Xorg 165MiB |
| 0 N/A N/A 1362 G /usr/bin/gnome-shell 23MiB |
| 0 N/A N/A 14768 C ...ux-b5L0JzLd-py3.12/bin/python 66986MiB |
+-----------------------------------------------------------------------------------------+
Completed in: 01 minute and 13 seconds.
Result is kinda amazing but quite slow.
Subscribe to my newsletter
Read articles from Sprited Dev directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by
