Implementation Roadmap Confluence (CQL) and Jira (JQL) RAG Semantic AI Powered Synthesis

Menno DrescherMenno Drescher
4 min read

๐ŸŽฏ Phase 1: Simple Start (CURRENT)
Timeline: Week 1-2
Status: โœ… Implemented
What's Built:

  • Natural Language Query Processing: Basic keyword and intent recognition

  • Smart Query Routing: Route queries to appropriate data sources (Confluence, Jira, GitHub)

  • Relevance Scoring: Simple algorithm to rank results by relevance

  • Multi-Source Integration: Unified search across your existing platforms
    Key Features:

// Example queries that work now:
"What are the key requirements for API developers?"
"Show me the business case and ROI"
"Who are the user personas for this project?"
"What tasks are related to API gateway development?"

Technical Implementation:

  • Rule-based query analysis

  • Context-aware search routing

  • Simple entity extraction

  • Relevance calculation based on term frequency
    ๐Ÿš€ Phase 2: Add Intelligence Layer (NEXT)
    Timeline: Week 3-4
    Status: ๐Ÿ”„ Ready to implement
    Enhancements to Add:

  • Semantic Embeddings: Use OpenAI/Azure embeddings for better understanding

  • Vector Similarity Search: Store and search document embeddings

  • Enhanced Entity Recognition: More sophisticated NLP

  • Query Expansion: Automatically expand queries with related terms
    Implementation Plan:

// Phase 2 capabilities:
- Embed all Confluence/Jira content using OpenAI embeddings
- Store embeddings in vector database (Pinecone/Weaviate)
- Use semantic similarity for query matching
- LLM-powered query understanding

Example Enhanced Queries:

"How do we ensure API quality?" 
โ†’ Finds QA processes, testing strategies, quality metrics

"What's the financial impact of this project?"
โ†’ Connects business case, ROI, cost analysis, revenue projections

๐ŸŽช Phase 3: Integrate Gradually (FUTURE)
Timeline: Week 5-8
Status: ๐Ÿ“‹ Planned
Advanced Features:

  • Knowledge Graph: Map relationships between documents, tasks, and people

  • Contextual Follow-ups: Generate intelligent follow-up questions

  • Cross-Platform Analytics: Track knowledge usage patterns

  • Automated Insights: Surface relevant information proactively
    Integration Points:

// Phase 3 integrations:
- Real-time sync with Confluence/Jira changes
- Integration with development workflows
- Slack/Teams bot interface
- Dashboard for knowledge analytics

๐Ÿ“Š Current Capabilities Demo
Business Intelligence Queries:

  • โœ… "What's the ROI of the API Management Platform?"

  • โœ… "Show me the business case details"

  • โœ… "What are the project costs and timeline?"
    Requirements & Design Queries:

  • โœ… "Who are our target users and their needs?"

  • โœ… "What are the key user personas?"

  • โœ… "What requirements do API developers have?"
    Project Management Queries:

  • โœ… "What's the status of KAN-121?"

  • โœ… "Which tasks are related to API gateway?"

  • โœ… "Show me current project milestones"
    User-Specific Queries:

  • โœ… "What are Anya Sharma's main goals?"

  • โœ… "What pain points does Ben Carter face?"

  • โœ… "How does Chloe Davis measure success?"
    ๐Ÿ›  Technical Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   User Query    โ”‚โ”€โ”€โ”€โ–ถโ”‚  Query Analyzer โ”‚โ”€โ”€โ”€โ–ถโ”‚  Source Router  โ”‚
โ”‚ Natural Languageโ”‚    โ”‚ Intent/Context  โ”‚    โ”‚ Confluence/Jira โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                                        โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Ranked        โ”‚โ—€โ”€โ”€โ”€โ”‚   Result        โ”‚โ—€โ”€โ”€โ”€โ”‚   Multi-Source  โ”‚
โ”‚   Results       โ”‚    โ”‚   Ranker        โ”‚    โ”‚   Search        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Data Sources (Current):

  • Confluence: Business docs, requirements, user stories

  • Jira: Project tasks, issues, milestones

  • GitHub: Technical docs, code, architecture
    Intelligence Layer (Phase 1):

  • Rule-based query understanding

  • Context-aware routing

  • Simple relevance scoring

  • Entity extraction
    ๐Ÿšฆ Getting Started

  1. Test Current System:
cd src/rag
node test-rag-system.js
  1. Try Interactive Queries:
node test-rag-system.js "What are the main user personas?"
node test-rag-system.js "Show me the business case ROI"
  1. Integrate with Your Workflow:
import { RAGAtlassianIntegration } from './atlassian-integration';

const rag = new RAGAtlassianIntegration({
  cloudId: 'cba-adpa.atlassian.net',
  confluenceBaseUrl: '<https://cba-adpa.atlassian.net/wiki',>
  jiraBaseUrl: '<https://cba-adpa.atlassian.net',>
  spaceKey: 'AMP'
});

const results = await rag.queryKnowledge("What are API developer requirements?");

๐Ÿ“ˆ Benefits Already Achieved
โœ… Unified Knowledge Access

  • Single interface to query all project knowledge

  • Automatic routing to correct data sources

  • Consistent results format across platforms
    โœ… Intelligent Query Processing

  • Natural language understanding

  • Context-aware search

  • Intent-based routing
    โœ… Enhanced Productivity

  • Fast knowledge discovery

  • Reduced context switching

  • Automated result ranking
    ๐Ÿ”ฎ Phase 2 Preview: Semantic Search

// Coming soon - semantic understanding:
"How do we handle API security?"
โ†’ Connects: security requirements, authentication, authorization, 
   compliance docs, security testing, threat models

"What's our developer experience strategy?"  
โ†’ Finds: developer personas, onboarding, documentation quality,
   SDK availability, community support, feedback loops

Phase 2 Technical Stack:

  • Embeddings: OpenAI text-embedding-ada-002

  • Vector DB: Pinecone or Weaviate

  • LLM: GPT-4 for query enhancement

  • Sync: Real-time updates from source systems
    This roadmap shows clear progression from simple rule-based intelligence to advanced semantic understanding, with each phase building on the previous foundation.

0
Subscribe to my newsletter

Read articles from Menno Drescher directly inside your inbox. Subscribe to the newsletter, and don't miss out.

Written by

Menno Drescher
Menno Drescher

Our extensive experience in Human Capital Management (HCM), combined with a strong background in Finance, ICT employee HR system adoption, and HR consultancy, brings a compelling value proposition. Our expertise in transformations to Entra, Organizational Performance Management, Analytical Skills, Security and Compliance, and End User Adoption is crucial in todayโ€™s rapidly evolving business landscape.