Revolutionizing Trade Settlement with Amazon Bedrock AgentCore: Part 2 - Technical Deep Dive and Implementation


๐ฏ Introduction
In Part 1, we explored the challenges facing trade settlement and how Agentic AI can revolutionize this critical financial process. Now, we'll dive deep into the technical implementation using Amazon Bedrock AgentCore, exploring the architecture, components, and step-by-step implementation process.
What You'll Learn:
Amazon Bedrock AgentCore architecture and capabilities
Detailed solution design and agent workflows
Step-by-step implementation procedures
AWS console configurations and best practices
Real-world deployment considerations
๐๏ธ Amazon Bedrock AgentCore: The Foundation
What is Amazon Bedrock AgentCore?
Amazon Bedrock AgentCore is a fully managed service that provides the infrastructure and tools needed to build, deploy, and manage agentic AI applications at enterprise scale. It combines the power of foundation models with agent orchestration, tool integration, and enterprise-grade security.
Core Components Architecture
Agent Runtine
%%{init: {
"themeVariables":{"fontFamily":"Inter, Arial, sans-serif","fontSize":"20px"},
"flowchart":{"nodeSpacing":60,"rankSpacing":70,"htmlLabels":true}
}}%%
flowchart LR
subgraph "Agent Runtime"
A1(Agent Orchestrator):::agent
A2[Foundation Models]:::ai
A3[Tool Integration Engine]:::comp
A4[Memory Management]:::comp
A5[Context Management]:::comp
A1 --> A2
A1 --> A3
A1 --> A4
A1 --> A5
end
classDef agent fill:#ffecb3,stroke:#ffa000,stroke-width:2px;
classDef ai fill:#bbdefb,stroke:#1976d2,stroke-width:2px;
classDef comp fill:#f3e5f5,stroke:#8e24aa,stroke-width:2px;
Gateway & Identity
%%{init: {
"themeVariables":{"fontFamily":"Inter, Arial, sans-serif","fontSize":"15px"},
"flowchart":{"nodeSpacing":50,"rankSpacing":60,"htmlLabels":true}
}}%%
flowchart LR
subgraph "Gateway & Identity"
F1(AgentCore Gateway):::gw
F2[Authentication]:::infra
F3[Authorization]:::infra
F4[MCP Protocol]:::infra
F1 --> F2
F1 --> F3
F1 --> F4
end
classDef gw fill:#ffe0b2,stroke:#f57c00,stroke-width:2px;
classDef infra fill:#e0f2f1,stroke:#00695c,stroke-width:2px;
Infrastructure
%%{init: {
"themeVariables":{"fontFamily":"Inter, Arial, sans-serif","fontSize":"20px"},
"flowchart":{"nodeSpacing":60,"rankSpacing":70,"htmlLabels":true}
}}%%
flowchart LR
subgraph "Infrastructure"
J1(Container Runtime):::infra
J2[Auto Scaling]:::infra
J3[Load Balancing]:::infra
J4[Health Monitoring]:::infra
J1 --> J2
J1 --> J3
J1 --> J4
end
classDef infra fill:#e0f2f1,stroke:#00695c,stroke-width:2px;
External Integrations for this usecase
%%{init: {
"themeVariables":{"fontFamily":"Inter, Arial, sans-serif","fontSize":"20px"},
"flowchart":{"nodeSpacing":60,"rankSpacing":70,"htmlLabels":true}
}}%%
flowchart LR
subgraph "External Integrations"
N[AWS Services]:::ext
O[(DynamoDB)]:::db
P[CloudWatch]:::ext
Q[IAM]:::ext
R[Custom APIs]:::ext
S[Trading Systems]:::ext
T[Risk Systems]:::ext
U[Compliance Systems]:::ext
N --> O
N --> P
N --> Q
R --> S
R --> T
R --> U
end
classDef ext fill:#fff9c4,stroke:#fbc02d,stroke-width:2px;
classDef db fill:#c8e6c9,stroke:#388e3c,stroke-width:2px;
Key Capabilities
1. Agent Orchestration
Multi-Agent Coordination: Seamless collaboration between specialized agents
Workflow Management: Complex business process automation
State Management: Persistent agent state across interactions
Error Handling: Graceful failure recovery and escalation
2. Foundation Model Integration
Model Selection: Choose optimal models for specific tasks
Prompt Engineering: Advanced prompt optimization and management
Response Processing: Intelligent parsing and validation
Cost Optimization: Efficient model usage and caching
3. Tool Integration
Native AWS Integration: Direct access to AWS services
Custom Tool Support: Integration with external systems and APIs
Security: Secure credential management and access control
Monitoring: Comprehensive tool usage tracking and analytics
๐ฏ Solution Architecture Deep Dive
High-Level System Architecture
%%{init: {
"themeVariables":{
"fontFamily":"Inter, Arial, sans-serif",
"fontSize":"20px"
},
"flowchart": {
"curve": "basis",
"padding": 12,
"nodeSpacing": 70,
"rankSpacing": 80,
"htmlLabels": true
}
}}%%
flowchart LR
%% =======================
%% BLOCK DIAGRAM: AGENTCORE
%% =======================
%%--- LEFT: Gateway & Identity (Entry) ---
subgraph G["Gateway & Identity"]
direction TB
F1(AgentCore Gateway):::gw
F2[Authentication]:::infra
F3[Authorization]:::infra
F4[MCP Protocol]:::infra
F1 --> F2
F1 --> F3
F1 --> F4
end
%%--- CENTER: Agent Runtime (Brain) ---
subgraph RUNTIME["Agent Runtime"]
direction TB
A1(Agent Orchestrator):::agent
A2[Foundation Models]:::ai
A3[Tool Integration Engine]:::comp
A4[Memory Management]:::comp
A5[Context Management]:::comp
A1 --> A2
A1 --> A3
A1 --> A4
A1 --> A5
end
%%--- RIGHT: External Integrations (World) ---
subgraph EXT["External Integrations"]
direction TB
N[AWS Services]:::ext
O[(DynamoDB)]:::db
P[CloudWatch]:::ext
Q[IAM]:::ext
R[Custom APIs]:::ext
S[Trading Systems]:::ext
T[Risk Systems]:::ext
U[Compliance Systems]:::ext
N --> O
N --> P
N --> Q
R --> S
R --> T
R --> U
end
%%--- BOTTOM: Platform Infrastructure (Ops) ---
subgraph INFRA["Platform Infrastructure"]
direction LR
J1(Container Runtime):::infra
J2[Auto Scaling]:::infra
J3[Load Balancing]:::infra
J4[Health Monitoring]:::infra
J1 --> J2
J1 --> J3
J1 --> J4
end
%% =======================
%% CROSS-BLOCK FLOWS
%% =======================
%% Entry into runtime
F1 ==> A1
%% Tooling out to services/APIs
A3 -- Uses --> N
A3 -- Uses --> R
%% Control/ops touchpoints (dotted = control/ops)
A1 -. telemetry .-> J4
F1 -. routed via .-> J3
%% =======================
%% CONTEXT FRAME
%% =======================
subgraph FRAME["Amazon Bedrock AgentCore Platform"]
end
%% Visually group main blocks within FRAME
FRAME --- G
FRAME --- RUNTIME
FRAME --- EXT
FRAME --- INFRA
%% =======================
%% LEGEND
%% =======================
subgraph LEGEND["Legend"]
direction TB
L1[[Solid arrow = data/tool call]]
L2(((Dotted arrow = control/ops)))
end
%% =======================
%% STYLES
%% =======================
classDef agent fill:#ffecb3,stroke:#ffa000,stroke-width:2px;
classDef ai fill:#bbdefb,stroke:#1976d2,stroke-width:2px;
classDef comp fill:#f3e5f5,stroke:#8e24aa,stroke-width:2px;
classDef gw fill:#ffe0b2,stroke:#f57c00,stroke-width:2px;
classDef infra fill:#e0f2f1,stroke:#00695c,stroke-width:2px;
classDef ext fill:#fff9c4,stroke:#fbc02d,stroke-width:2px;
classDef db fill:#c8e6c9,stroke:#388e3c,stroke-width:2px;
class A1 agent
class A2 ai
class A3,A4,A5 comp
class F1 gw
class F2,F3,F4,J1,J2,J3,J4 infra
class N,P,Q,R,S,T,U ext
class O db
Key Responsibilities:
Trade data validation and normalization
Database persistence with audit trails
Integration with downstream agents
Error handling and reporting
Matching Agent
flowchart TD
A[Receive Trade for Matching] --> B[Query Pending Trades]
B --> C[Apply Deterministic Rules]
C --> D{Exact Match Found?}
D -->|Yes| E[Create Match Record]
D -->|No| F[Apply Fuzzy Matching]
F --> G[Calculate Confidence Score]
G --> H{Confidence > 98%?}
H -->|Yes| E
H -->|No| I{Confidence > 85%?}
I -->|Yes| J[Queue for Human Review]
I -->|No| K[Trigger Exception Agent]
E --> L[Update Trade Status]
L --> M[Create Settlement Instructions]
style A fill:#e3f2fd
style C fill:#e8f5e8
style F fill:#fff3e0
style G fill:#fff3e0
style E fill:#e8f5e8
style K fill:#ffebee
style J fill:#fff8e1
Advanced Matching Logic:
Deterministic Matching: Exact field matching (price, quantity, instrument)
Probabilistic Matching: ML-based similarity scoring
Confidence Thresholds: Risk-based decision making
Learning Integration: Continuous improvement from outcomes
Exception Resolution Agent
flowchart TD
A[Receive Exception] --> B[Classify Exception Type]
B --> C[Analyze Historical Patterns]
C --> D[Generate Resolution Strategy]
D --> E{Auto-Resolution Possible?}
E -->|Yes| F[Execute Resolution]
E -->|No| G[Escalate to Human]
F --> H[Validate Resolution]
H --> I{Resolution Successful?}
I -->|Yes| J[Update Records]
I -->|No| G
G --> K[Create Investigation Task]
J --> L[Learn from Outcome]
style A fill:#e3f2fd
style B fill:#fff3e0
style C fill:#fff3e0
style D fill:#fff3e0
style F fill:#e8f5e8
style G fill:#fff8e1
style L fill:#f3e5f5
Exception Types Handled:
Price Mismatches: Tolerance-based resolution
Quantity Discrepancies: Partial matching strategies
Currency Issues: Conversion and validation
Settlement Date Conflicts: Calendar-aware resolution
Counterparty Problems: Risk-based escalation
๐ ๏ธ Implementation Procedure
Phase 1: Infrastructure Setup
Step 1: AWS Account Preparation
Prerequisites:
AWS Account with appropriate permissions
AWS CLI configured
Docker installed (for local development)
Required AWS Services:
Amazon Bedrock AgentCore
Amazon DynamoDB
Amazon Cognito
AWS IAM
Amazon CloudWatch
Step 2: DynamoDB Table Creation
erDiagram
TRADES {
string trade_id PK
string instrument_id
decimal quantity
decimal price
string side
string account
string status
datetime created_at
datetime updated_at
}
MATCHES {
string match_id PK
string trade_id_1 FK
string trade_id_2 FK
decimal confidence
string match_type
string status
datetime created_at
}
EXCEPTIONS {
string exception_id PK
string trade_id FK
string exception_type
string details
string status
string priority
datetime sla_deadline
datetime created_at
}
AUDIT {
string audit_id PK
string trade_id FK
string action
string details
string checksum
datetime timestamp
}
TRADES ||--o{ MATCHES : "participates_in"
TRADES ||--o{ EXCEPTIONS : "generates"
TRADES ||--o{ AUDIT : "tracked_by"
AWS Console Steps:
Navigate to DynamoDB Console
Create tables with the schema above
Configure appropriate read/write capacity
Set up Global Secondary Indexes (GSIs) for query optimization
Step 3: IAM Role Configuration
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"dynamodb:GetItem",
"dynamodb:PutItem",
"dynamodb:UpdateItem",
"dynamodb:DeleteItem",
"dynamodb:Query",
"dynamodb:Scan"
],
"Resource": [
"arn:aws:dynamodb:*:*:table/TradeSettlement-*"
]
},
{
"Effect": "Allow",
"Action": [
"bedrock:InvokeModel",
"bedrock:InvokeModelWithResponseStream"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"
],
"Resource": "*"
}
]
}
Phase 2: AgentCore Development
Step 1: Agent Implementation
Core Agent Structure:
from bedrock_agentcore.runtime import BedrockAgentCoreApp
from strands import Agent, tool
from strands.models import BedrockModel
# Initialize AgentCore App
app = BedrockAgentCoreApp()
# Initialize Foundation Model
model = BedrockModel(
model_id="anthropic.claude-3-7-sonnet-20241022-v1:0",
region="us-east-1"
)
@tool
def store_trade(trade_data: dict) -> dict:
"""Store trade with validation and normalization"""
# Implementation details...
pass
@tool
def find_matches(trade_id: str) -> dict:
"""Find potential matches for a trade"""
# Implementation details...
pass
# Agent Definitions
ingestion_agent = Agent(
name="Trade Ingestion Agent",
model=model,
tools=[store_trade],
instructions="""
You are a trade ingestion specialist responsible for:
1. Validating trade data integrity
2. Normalizing data formats
3. Storing trades with audit trails
4. Handling validation errors gracefully
"""
)
matching_agent = Agent(
name="Trade Matching Agent",
model=model,
tools=[find_matches],
instructions="""
You are a trade matching specialist using:
1. Deterministic matching for exact matches
2. Probabilistic matching for fuzzy matches
3. Confidence-based decision making
4. Exception creation for unmatched trades
"""
)
@app.entrypoint
def trade_settlement_handler(payload):
"""Main entrypoint for trade settlement operations"""
operation = payload.get("operation", "status")
if operation == "ingest":
return ingestion_agent(payload)
elif operation == "match":
return matching_agent(payload)
else:
return {"status": "ready", "available_operations": ["ingest", "match"]}
Step 2: Configuration Setup
AgentCore Configuration (.bedrock_agentcore.yaml
):
default_agent: trade_settlement_system
agents:
trade_settlement_system:
name: trade_settlement_system
entrypoint: ./agentcore-blog/trade-settlements/fixed_cloud_agentcore.py
platform: linux/arm64
container_runtime: docker
aws:
execution_role: arn:aws:iam::09**********:role/agentcore-trade-settlement-role
execution_role_auto_create: false
account: 09**********
region: us-east-1
ecr_repository: 09**********.dkr.ecr.us-east-1.amazonaws.com/bedrock_agentcore-trade_settlement_system
ecr_auto_create: true
network_configuration:
network_mode: PUBLIC
protocol_configuration:
server_protocol: HTTP
observability:
enabled: true
bedrock_agentcore:
agent_id: trade_settlement_system-iQ2FTU7Rbd
agent_arn: arn:aws:bedrock-agentcore:us-east-1:09**********:runtime/trade_settlement_system-iQ2FTU7Rbd
agent_session_id: d131fe07-2cda-4521-9f45-987cfea341c6
codebuild:
project_name: bedrock-agentcore-trade_settlement_system-builder
execution_role: arn:aws:iam::09**********:role/AmazonBedrockAgentCoreSDKCodeBuild-us-east-1-6ec1ed5707
source_bucket: bedrock-agentcore-codebuild-sources-098493093308-us-east-1
authorizer_configuration: null
oauth_configuration: null
Phase 3: Gateway and Identity Setup
Step 1: Cognito User Pool Configuration
graph LR
A[Client Application] --> B[Cognito User Pool]
B --> C[OAuth2 Token]
C --> D[AgentCore Gateway]
D --> E[Agent Runtime]
style B fill:#ff9800
style D fill:#ff5722
style E fill:#2196f3
Cognito Setup Steps:
Create User Pool in AWS Console
Configure OAuth2 client credentials flow
Set up resource server and scopes
Generate client credentials
Step 2: AgentCore Gateway Creation
Gateway Configuration:
{
"gatewayName": "TradeSettlementGateway",
"description": "Gateway for Trade Settlement AgentCore System",
"identityConfiguration": {
"type": "COGNITO_USER_POOL",
"userPoolId": "us-east-1_XXXXXXXXX",
"clientId": "your-client-id"
},
"targetConfiguration": {
"type": "AGENT_RUNTIME",
"agentRuntimeArn": "arn:aws:bedrock-agentcore:us-east-1:ACCOUNT:runtime/trade_settlement_system"
}
}
[Screenshot Placeholder: AgentCore Console showing gateway creation
]
Phase 4: Deployment and Testing
Step 1: Local Development and Testing
# Install dependencies
pip install bedrock-agentcore strands boto3
# Local testing
python local_agentcore_test.py
# Local container build and test
agentcore launch --local
Step 2: Cloud Deployment
# Build and deploy to cloud
agentcore launch --agent trade_settlement_system
# Check deployment status
agentcore status
# Test cloud deployment
agentcore invoke '{"prompt": "Hello AgentCore"}'
Step 3: Gateway Testing
import requests
import json
import base64
# Get OAuth2 token
def get_access_token():
credentials = f"{CLIENT_ID}:{CLIENT_SECRET}"
encoded_credentials = base64.b64encode(credentials.encode()).decode()
response = requests.post(
f"{COGNITO_DOMAIN}/oauth2/token",
headers={
"Authorization": f"Basic {encoded_credentials}",
"Content-Type": "application/x-www-form-urlencoded"
},
data={
"grant_type": "client_credentials",
"scope": "TradeSettlementGateway/invoke"
}
)
return response.json()["access_token"]
# Test gateway
def test_gateway():
token = get_access_token()
payload = {
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "store_trade",
"arguments": {
"trade_data": {
"trade_id": "TEST_001",
"instrument_id": "AAPL",
"quantity": 100,
"price": 175.50,
"side": "BUY",
"account": "TEST_ACCOUNT"
}
}
}
}
response = requests.post(
GATEWAY_URL,
headers={"Authorization": f"Bearer {token}"},
json=payload
)
return response.json()
๐ Monitoring and Observability
CloudWatch Integration
graph TB
subgraph "AgentCore Runtime"
A[Agent Execution] --> B[Metrics Collection]
A --> C[Log Generation]
A --> D[Trace Creation]
end
subgraph "CloudWatch"
E[CloudWatch Metrics] --> F[Custom Dashboards]
G[CloudWatch Logs] --> H[Log Insights]
I[X-Ray Traces] --> J[Service Map]
end
subgraph "Alerting"
K[CloudWatch Alarms] --> L[SNS Notifications]
L --> M[Email/SMS Alerts]
L --> N[Lambda Functions]
end
B --> E
C --> G
D --> I
F --> K
H --> K
J --> K
style A fill:#2196f3
style E fill:#ff9800
style G fill:#ff9800
style I fill:#ff9800
style K fill:#f44336
Key Metrics to Monitor:
Agent Performance: Execution time, success rate, error rate
Trade Processing: Throughput, latency, match rate
Exception Handling: Exception volume, resolution time, escalation rate
Custom Dashboards
Dashboard Components:
Real-time Trade Volume: Live trade ingestion rates
Match Rate Trends: Historical matching performance
Exception Analytics: Exception types and resolution patterns
Agent Performance: Individual agent execution metrics
System Health: Infrastructure and resource utilization
๐ฏ Performance Optimization
Scaling Strategies
Horizontal Scaling
Auto Scaling: Automatic container scaling based on demand
Load Distribution: Intelligent request routing
Resource Optimization: Dynamic resource allocation
Vertical Scaling
Memory Optimization: Right-sizing based on workload
CPU Allocation: Performance tuning for compute-intensive tasks
Storage Optimization: Efficient data access patterns
Cost Optimization
pie title Cost Distribution
"Foundation Model Usage" : 45
"Container Runtime" : 25
"Data Storage" : 15
"Network Transfer" : 10
"Monitoring & Logging" : 5
Cost Optimization Strategies:
Model Selection: Choose cost-effective models for specific tasks
Caching: Reduce redundant model calls
Batch Processing: Optimize for throughput vs. latency
Resource Scheduling: Scale down during low-activity periods
๐ฏ What's Next?
In Part 3 of this series, we'll cover:
Testing and Validation
Comprehensive testing strategies and frameworks
Performance benchmarking and load testing
Integration testing with existing systems
User acceptance testing procedures
Deployment Considerations
Production deployment best practices
Blue-green deployment strategies
Rollback procedures and disaster recovery
Change management and version control
Real-World Challenges
Common implementation issues and solutions
Performance tuning and optimization
Troubleshooting and debugging techniques
Lessons learned and best practices
๐ Key Takeaways
Amazon Bedrock AgentCore provides a comprehensive platform for agentic AI applications
Proper architecture design is crucial for scalable and maintainable solutions
Security and compliance must be built-in from the ground up
Monitoring and observability are essential for production operations
Performance optimization requires continuous tuning and optimization
๐ Series Navigation
Part 2: Bedrock AgentCore Deep Dive and Implementation โ You are here
Part 3: Testing, Deployment, and Real-World Considerations โ Soon will be created
Ready to deploy your agentic AI solution? Join us in Part 3 where we'll explore testing strategies, deployment best practices, and real-world implementation challenges.
Subscribe to my newsletter
Read articles from DataOps Labs directly inside your inbox. Subscribe to the newsletter, and don't miss out.
Written by

DataOps Labs
DataOps Labs
I'm Ayyanar Jeyakrishnan ; aka AJ. With over 18 years in IT, I'm a passionate Multi-Cloud Architect specialising in crafting scalable and efficient cloud solutions. I've successfully designed and implemented multi-cloud architectures for diverse organisations, harnessing AWS, Azure, and GCP. My track record includes delivering Machine Learning and Data Platform projects with a focus on high availability, security, and scalability. I'm a proponent of DevOps and MLOps methodologies, accelerating development and deployment. I actively engage with the tech community, sharing knowledge in sessions, conferences, and mentoring programs. Constantly learning and pursuing certifications, I provide cutting-edge solutions to drive success in the evolving cloud and AI/ML landscape.